
Instituto De Matemática Pura E Aplicada

Doctoral Thesis

under the supervision of Hubert LACOIN

Mixing Time for Interface Models and Particle System

Shangjie YANG

Thesis committee:

Prof. Tertuliano FRANCO UFBA
Prof. Milton JARA IMPA
Prof. Cyril LABBÉ University Paris-Dauphine.
Prof. Hubert LACOIN IMPA
Prof. Claudio LANDIM IMPA
Prof. Augusto TEIXEIRA IMPA (suplente)



This thesis is based on the following works:
1. S. Yang, Cutoff for polymer pinning dynamics in the repulsive phase

Arxiv:1909.04635 to appear in AIHP Probabilités et Statistiques
2. H. Lacoin, S. Yang, Metastability for expanding bubbles on a sticky substrate

Arxiv:2007.07832 submitted for publication
3. H. Lacoin, S. Yang, Mixing time of the asymmetric simple exclusion process in

random environment Arxiv:2102.02606 submitted for publication
I am very grateful to Hubert Lacoin for suggesting the problems, inspiring discussions and

collaborations during these works.



Agradecimento

Sobretudo, eu agradeço meu orientador, Hubert Lacoin, por compartilhar sabedoria, suges-
tões, intuição profunda e ideias criativas comigo; por sempre ter paciência e dar orientação,
confiança, encorajamento e apoio para mim; por me aceitar como um aluno dele desde o segundo
ano de meu mestrado. Sem ele, eu não teria a oportunidade para me formar um matemático.
Com ele, eu aprendi que não existe limitação na imaginação e também a provar coisas com a
mão na massa. Eu estudo com ele a melhor atitude para ter um papel positivo dentro da comu-
nidade matemática. Estou muito grato porque posso estar ao lado dele e tenho ele como um de
meus melhores exemplos de matemáticos. Além disso, eu também agradeço outros professores do
grupo de probabilidade do IMPA: Milton Jara, Claudio Landim, Rob Morris, Roberto Imbuzeiro
de Oliveira e Augusto Teixeira, com quem eu sempre posso discutir matemática e pedir ajuda e
apoio. Em suas aulas, seminários e discussões, eu apreciei suas ideias intuitivas de matemática.
Com eles, seis anos de estudo no IMPA foram bem felizes e passaram rapidamente.

Eu agradeço a banca de tese: Tertuliano Franco, Milton Jara, Cyril Labbé, Hubert Lacoin,
Claudio Landim, Augusto Teixeira por interessante perguntas e sugestões sobre melhorar a tese.

Eu também gostaria de agradecer Kainan Xiang por seu apoio constante. Ele foi quem me
sugeriu recomeçar o mestrado no IMPA e fazer doutorado com o Hubert. Mais ainda, eu agra-
deço Vladas Sidoravicius, meu orientador de mestrado no IMPA e quem me deu sugestões de
estudo.

Quando eu cheguei no Rio de Janeiro e não sabia nada de português, Tiecheng Xu me aju-
dou a me estabelecer e me mostrou lugares importantes. Mauricio De Carvalho, meu professor
de português, me forçou a falar e escrever português, porque eu fui o único aluno dele. Os
professores, os colegas e os funcionários do IMPA sempre me ofereceram pacientemente ajuda
generosa. Nesse estudo de seis anos no IMPA, eu me beneficiei bastante dos professores do grupo
de probabilidade, e tive colegas excelentes com quem discutir, por exemplo: Roberto Viveros,
Jiongjie Wang, Wenxiang Huang, Daniel Yukimura, Leandro Chiarini, Franco Severo, Jamerson
Douglas, Walner Mendonça, Maurício Collares et al.

Durante meus seis anos no Rio, tive uma experiência muito feliz, especialmente por causa
da companhia de meus amigos: João Paulo, Daniel Yukimura, Irène Mallordy, Olivier Thom,
Roberto Viveros, Gregory Cosac, Mateus Melo, Franco Severo, Leandro Chiarini, Walner Men-
donça, Letícia Mattos, Xiaobo Huang, Jian Wang, Wenxiang Huang, Jiongjie Wang, Daniela
Cuesta, Vitor Alves, Simon Thalabard, Tingting Jiang, Haojun Xiao, Daniel Lopez, João Na-
riyoshi, Carla Mont’Alvão, Dali Shen, Victor Souza, Claudia Lorena, Reza Arefidamghani, Lucas
Aragao, Jose Manuel, Maria Clara, Clarice Netto, Valdir Júnior, César Hilario, Dan Agüero, Jen-
nifer Loria, et al.

Enfim, eu tomo o lugar para dizer obrigado pelo apoio de minha família, especialmente minha
mãe que sempre me encorajou para superar situações difíceis, desde minha infância. Ademais,
eu agradeço Zhichun Chen, meu professor de ensino médio, que me ofereceu apoio eterno.





Contents

Summary 9

Chapter 1. An introduction to mixing for continuous-time Markov chains 11
1. Definition of continuous-time Markov chains 11
1.1. Existence of Markov chains via a graphical construction. 13
1.2. The invariant probability measure 15
Detailed balance condition. 16
Existence and uniqueness 16
Convergence to equilibrium 17
2. Markov chain mixing 18
2.1. The decay rate of the distance to equilibrium in terms of tmix. 20
3. Eigenvalues 21
3.1. Eigenvalues and eigenfunctions of L 21
3.2. The decay rate of the distance to equilibrium in terms of the relaxation time. 24
4. Cutoff phenomenon 25
5. What is done in the thesis? 26
5.1. Chapter 2: Cutoff for polymer pinning dynamics in the repulsive phase 26
Background 26
Model 26
Previous results 28
Our results 28
Main idea for the lower bound on the mixing time for λ ∈ [0, 2) 29
Main idea for the upper bound on the mixing time when λ ∈ [0, 1] 29
Main idea for the upper bound on the mixing time when λ ∈ (1, 2) 30
5.2. Chapter 3: Metastability for expanding bubbles on a sticky substrate 30
Model 30
Related previous results 31
Our equilibrium results 32
Our dynamical results 33
Idea for the proof about statics 35
Idea for the proof about dynamics 35
5.3. Chapter 4: Mixing time of the asymmetric simple exclusion process in a random

environment 36
Model 36
Related previous results about random walk in a random environment 37
Related previous results about tN,k,ωmix when ω ≡ p. 38
Related previous results about tN,1,ωmix 38
Related previous results about tN,k,ωmix in ballistic environment 38
Our results 39
Idea for the lower bound on the mixing time 39

5



6 CONTENTS

Idea for the upper bound on the mixing time 39

Chapter 2. Cutoff for polymer pinning dynamics in the repulsive phase 41
1. Introduction 41
1.1. The random walk pinning model 41
1.2. The dynamics 42
1.3. Main results 44
1.4. Other values of λ 45
1.5. Organization of the chapter 45
1.6. Notation 45
2. Technical preliminaries 45
2.1. A graphical construction. 46
2.2. Useful reclaimed results. 47
3. Lower bound on the mixing time for λ ∈ (0, 2) 47
3.1. Ingredients for the lower bound of the mixing time. 48
3.2. Proof of the lower bound on the mixing time. 49
4. Upper bound on the mixing time for λ ∈ (0, 1] 51
4.1. A weighted area function. 52
4.2. The proof of T2 = tδ/2. 54
4.3. The estimation of ⟨A.⟩Ti − ⟨A.⟩Ti−1 . 55
4.4. The comparison of Ti − Ti−1 to ∆i⟨A⟩. 56
5. Upper bound on the dynamics starting from the extremal paths for λ ∈ (1, 2) 60
2.A. Proof of Lemma 4.9. 66
2.A.1. Simple exclusion process. 67
2.A.2. Compare the polymer pinning dynamics to simple exclusion process. 68
2.B. Spin system. 68

Chapter 3. Metastability for expanding bubbles on a sticky substrate 71
1. Introduction 71
2. Model and results 73
2.1. The setup 73
The static model 73
The dynamics 74
2.2. Equilibrium results 75
The Random walk pinning model 75
The weakly asymmetric simple exclusion process on the segment 75
The hybrid model 76
2.3. Dynamics results 79
The main result 79
Mixing time 79
A first heuristic 79
2.4. Organization of the chapter 81
About notation 81
3. Equilibrium behavior and partition function asymptotics 81
3.1. The case λ = 0 82
3.2. The case when F (λ) ≥ G(σ) 86
3.3. The case G(σ) > F (λ) 89
3.4. Proof of Proposition 2.1 and Theorem 2.4 91
4. Bottleneck identification and lower bound on the relaxation time 92



CONTENTS 7

4.1. Heuristics 92
4.2. Lower bound on the relaxation time. 92
5. Upper bounds on the relaxation time 96
5.1. Stating the results 96
5.2. The chain decomposition strategy 97
5.3. The induction strategy 98
5.4. Proof of proposition 5.4 99
5.5. Proof of Proposition 5.2 101
5.6. Proof of Proposition 5.8 102
5.7. Proof of Proposition 5.9 103
6. Metastability proof of Theorem 2.8 106
3.A. Proof of Proposition 5.5 107

Chapter 4. Mixing time of the asymmetric simple exclusion process in a random
environment 109

1. Introduction 109
1.1. Overview 109
1.2. The exclusion process in a random environment 110
2. Model and result 112
2.1. An introduction to Random Walk in a Random Environment ω 112
2.2. The Simple Exclusion process in an environment ω 112
Definition 112
Mixing time and spectral gap 113
2.3. Results 114
Universal bounds for the mixing time on the exclusion process 114
Mixing time for the exclusion process in a random environment 115
2.4. Related work 116
Mixing time for the exclusion process in a homogeneous environment 116
Mixing time for the random walk in a random environment 117
Mixing time for the exclusion in a ballistic environment 117
Other perspectives concerning the exclusion process and random environments 117
2.5. Interpretation of our results and conjectures 117
Comments on Propositions 2.1 and 2.2 118
Comments on Theorems 2.4 and 2.4 118
Organization of the chapter 119
Notation 120
3. Technical preliminaries 120
3.1. Partial order on ΩN,k 120
3.2. Canonical coupling via graphical construction 120
3.3. Composed censoring inequality 121
3.4. Equilibrium estimates 122
4. Bounds for the mixing time with arbitrary environments 125
4.1. Proof of Proposition 2.1 125
4.2. Proof of Proposition 2.2 127
5. Lower bounds on the mixing time 130
5.1. A lower bound from the position of the first particle 130
5.2. A lower bound derived from flow consideration 131
5.3. Proof of Proposition 5.5. 133
6. Upper bound on the mixing time 135



8 CONTENTS

6.1. Deducing the mixing time from the hitting time of the maximal configuration 135
6.2. The case kN ≤ qN 136
6.3. Proof of auxiliary lemmas 138
6.4. The case kN ≥ qN 140

Bibliography 143



SUMMARY 9

Summary

Markov chain is the simplest stochastic process describing the evolution of random phenom-
enon such that given the present, the future of process does not depend on the past, which was
first studied by Markov [Mar06] in 1906. Since Markov chain plays an important and ubiqui-
tous role in statistical mechanics, population dynamics, Monte Carlo simulation etc., nowadays
it is still very active and widely studied in mathematics ([Ald83b, Ald83a, BD92]), physics
([DS87, SZ92, MO94]) and computer science ([JVV86, JSV04, Sin93]). In this thesis, we focus
on Markov chain in the perspective of out-of-equilibrium statistical mechanics.

Statistical mechanics aims at explaining the laws governing the macroscopic observable of
a physical system (temperature, pressure, magnetization, etc...) via a probabilistic representa-
tion at the microscopic scale. The state of a system at equilibrium is given by a probability
distribution on a finite state space, which assigns to each possible configuration a probability
proportional to a Gibbs weight defined by a Hamiltonian functional describing the energy of the
system and an inverse temperature. This equilibrium distribution is called the Gibbs state of the
system. In out-of-equilibrium statistical mechanics, the time evolution of a system is modeled
by a Markov chain for which the Gibbs state is an invariant measure.

In this thesis we are interested in dynamics of the heat-bath type. Considering an initial
configuration which differs from the equilibrium measure, we let the system evolve dynamically
as follows: given the current configuration, the state of every site is updated at a constant
rate, and the updated state of a site is sampled from the equilibrium measure conditioning on
the states of all the other sites unchanged. The central problem in the thesis is how long the
dynamics needs to relax to equilibrium, which is referred to as mixing time. The first chapter
of the thesis is devoted to an introduction to mixing for continuous-time Markov chains. Each
of the next three chapters presents original research concerning the study of a specific Markov
chain. More precisely, a brief introduction of these three chapters is listed as follows:

• Our second chapter focuses on a dynamical version of the directed random polymer pin-
ning model which considers the paths of the one-dimensional nearest-neighbor simple
random walk interacting with an impenetrable defected line. The statics of the model
have been well studied, and we refer to [Gia07] for reviews. In the static aspect, the
model exhibits a delocalized phase where the polymer fluctuates freely except for obey-
ing the positive constraint due to the impenetrable line and a localized phase where the
polymers get localized on the defected line. Caputo et al. in [CMT08] introduced the
dynamical version of the model, and studied the relaxation of the heat-bath dynamics
to equilibrium in the delocalized/localized phases.

In the delocalized phase, we show that the heat-bath dynamics suddenly changes
from being poorly mixed to being well mixed when looking at the proper time scale,
which improved a previous result by Caputo et al. This chapter is a preprint in
Arxiv:1909.04635, which will appear in the journal of Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques.

• In the third chapter, we consider a variant of the polymer pinning model where the poly-
mers are also subjected to another external force pulling the polymer surfaces away from
the impenetrable defected line. We give a full phase diagram for the statics identifying
the localized/delocalized phases. Concerning the heat-bath dynamics of the model, we
derive a full phase diagram separating the rapidly/slowly mixing phases where the sys-
tem relaxes to equilibrium in polynomial/superpolynomial time in terms of the size of
the interacting defected line. Whereas in the slowly mixing phase, the dynamics mixes
in exponential time and also exhibits metastablility. More precisely, there are two local
wells in the dynamics with one deeper than the other. If the dynamics starts from
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the shallow well, it thermalizes in the local well in polynomial time and takes another
exponential time to pass the tunnel to enter the deeper well where the dynamics gets
absorbed. This chapter is a preprint in Arxiv:2007.07832 (submitted for publication),
which is a joint work with Hubert Lacoin.

• The fourth and final chapter of this thesis is devoted to the study of the simple exclusion
process in a random environment. The simple exclusion process is one of the simplest
particle system. It is a very simplified lattice model for a gas of colliding particles,
and we refer to [Lig12, Chapter VIII.6] for a historical introduction. In this process,
particles perform independent continuous-time random walks on the lattice subject to
the exclusion rule, that is, each lattice site can be occupied by at most one particle.

The problem of mixing time for the simple exclusion process on the line segment
has been extensively studied in the case where the jump rates of the underlying random
walks are homogeneous, see [Wil04, Lac16b] for the symmetric case, [BBHM05, LL19] for
asymmetric exclusion and [LP16, LL20] for the weakly asymmetric (that is asymmetry
tending to zero with the size of the system). Much more recently the problem has been
considered for the case of spatially inhomogeneous environment in [Sch19]. Assuming
that the particles have a tendency to move to the right (or left), we show that the
dynamics mixes in polynomial time. This chapter is a preprint in Arxiv:2102.02606
(submitted for publication), collaborated with Hubert Lacoin.



CHAPTER 1

An introduction to mixing for continuous-time Markov chains

The aim of this chapter is to introduce the main topic of the thesis to the readers: mixing
times for continuous-time Markov chains. We only cover the basic notions which are necessary
to the understanding of our research results and refer to [Nor98, LP17] for a more complete
pedagogical approach to continuous-time Markov chains and mixing times respectively.

This introduction is organized as follows: In Section 1, we provide an axiomatic definition of
a continuous-time Markov chain on a finite state space (defined via a few properties), provide an
explicit construction of the process, and discuss the existence and uniqueness of its stationary
probability measure. In Section 2, we introduce the mixing times of continuous-time Markov
chains, which are of central interests in this thesis. In Section 3, we focus on reversible Markov
chains and discuss about the eigenvalues and eigenfunctions of the semi-group. In Section 4,
we introduce the cutoff phenomena of continuous-time Markov chains, which are in the focus of
Chapter 2. In Section 5, we give a picture about the next three chapters.

1. Definition of continuous-time Markov chains

A continuous-time Markov chain on a finite discrete space Ω is defined by its generator. The
generator L = (r(x, y))x,y∈Ω of a Markov chain is an Ω× Ω matrix whose elements satisfies{

r(x, y) ≥ 0, if x ̸= y ∈ Ω,∑
y∈Ω r(x, y) = 0, ∀x ∈ Ω.

(1.1)

The second line implies that r(x, x) = −
∑

y:y ̸=x r(x, y) =: −r(x). The generator L can be
identified with the following homeomorphism on RΩ

(Lf)(x) :=
∑
y∈Ω

r(x, y) (f(y)− f(x)) . (1.2)

Intuitively, the Markov chain with generator L is an Ω−valued stochastic process, which
when located at state x, jumps to state y at a rate r(x, y) independently from the past. To
give a rigorous definition which corresponds to this informal description, we first introduce the
Markov semi-group corresponding to L .

Proposition 1.1. We define Markov semi-group associated with L to be

Pt := etL =

∞∑
k=0

(tL)k

k!
, (1.3)

using the convention L0 := Id and 0! := 1. For all t ≥ 0, the matrix Pt = etL is well-defined
satisfying for all s, t ≥ 0

Pt+s = PtPs. (1.4)

11



12 1. INTRODUCTION

Moreover, Pt is a stochastic matrix for all t ≥ 0. That is to say, Pt satisfies
Pt(x, y) ≥ 0, ∀x, y ∈ Ω;∑
y∈Ω

Pt(x, y) = 1, ∀x ∈ Ω. (1.5)

Furthermore, for all t ≥ 0, the matrix Pt satisfies P0 = Id and the following equations:
dPt
dt

= LPt (the backward equation),

dPt
dt

= PtL (the forward equation),
(1.6)

and
e−tLPt = Pte

−tL = Id. (1.7)

Proof. To show that Pt is well-defined, we show that the series (1.3) is convergent for the
ℓ2 operator norm. We define the ℓ2 norm of f ∈ RΩ as

∥f∥2 :=

(∑
x∈Ω

f(x)2

)1/2

,

and then for any |Ω| × |Ω| matrix A : Ω× Ω 7→ R the ℓ2 operator norm by

∥A∥ := sup

{
∥Af∥2
∥f∥2

: ∥f∥2 ̸= 0

}
.

It satisfies
∥AB∥ ≤ ∥A∥ · ∥B∥,

∥A+B∥ ≤ ∥A∥+ ∥B∥.
(1.8)

Thus since ∥L∥ ≤ 2|Ω|maxx∈Ω r(x), we know that

∥etL∥ ≤
∞∑
k=0

tk∥L∥k

k!
= et∥L∥ <∞. (1.9)

Therefore Pt = etL is well-defined for all t ≥ 0, and

PtPs =

∞∑
k=0

tkLk

k!

∞∑
j=0

tjLj

j!
=

∞∑
n=0

Ln
∑
k,j

k+j=n

tksj

k!j!
= Pt+s. (1.10)

We postpone the proof of (1.5) to the end of Subsection 1.1 where we rely on a graphical
construction. Now we move to prove (1.6) and (1.7). From the definition

Pt = etL =

∞∑
k=0

tkLk

k!

and by the Dominate Convergence Theorem, we obtain (1.6). Moreover, since
d

dt
e−tLPt = −e−tLLPt + e−tLLPt = 0,

d

dt
Pte

−tL = −PtLe−tL + PtLe−tL = 0,

(1.11)

we obtain (1.7).
□
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Before defining a continuous-time Markov chain, we let D(R+,Ω) be the space of càdlàg
functions mapping R+ to Ω, and

B := σ

(
n⋂
i=1

{f ∈ D(R+,Ω) : f(ti) = xi} ;xi ∈ Ω, ti ∈ R+, n ∈ N

)
(1.12)

is the σ−algebra generated by the finite dimensional cylinder sets of D(R+,Ω).

Definition 1.2 (Continuous-time Markov chain). Let ν be a probability measure on Ω. The
random process (Xt)t≥0 taking values in D(R+,Ω) with probability distribution P is a continuous-
time Markov chain with generator L and initial distribution ν if

(1) we have
P [X0 = x] = ν(x), ∀x ∈ Ω; (1.13)

(2) the process (Xt)t≥0 satisfies Markov property which is for 0 ≤ t1 < · · · < tn < s < s+ t

P [Xs+t = y|Xs = x;Xtk = zk,∀k ≤ n] = P [Xs+t = y|Xs = x] = Pt(x, y) (1.14)

where Pt is the Markov semi-group associated with L.

The following statement ensures that Markov chain is well defined.

Theorem 1.3. Given ν and L, there exists a unique probability law P on D(R+,Ω) satisfying
the conditions stated in Definition 1.2.

We prove the existence via a graphical construction in the following subsection.

Proof of uniqueness. The conditions in (1.13) and (1.14) together provide the finite di-
mensional distributions of P, i.e. such that for 0 =: t0 ≤ t1 < t2 < · · · < tn

P [f ∈ D(R+,Ω) : f(ti) = xi, 1 ≤ i ≤ n] =
∑
x0∈Ω

ν(x0)
n∏
i=1

Pti−ti−1(xi−1, xi), (1.15)

where ν is the initial distribution and Pt is defined in (1.3). The uniqueness of P is an immediate
application of the π − λ Theorem. □

1.1. Existence of Markov chains via a graphical construction. In this subsection, we
present a graphical construction of a Markov chain. A graphical construction is the construction
of a stochastic processes by the means of auxiliary variables (typically Poisson clock processes
and uniform variables). It is an important tool in the study of Markov process and is often
used to provide coupling between Markov chains with different initial condition, for instance in
Chapter 2 (Section 2.1) and Chapter 4 (Section 3.2).

To construct a càdlàg process (X̃t)t≥0 whose distribution will be shown to satisfy the condi-
tions of Definition 1.2, we associate a Poisson clock process and uniform variables on [0, 1) with
each x ∈ Ω, denoted respectively by Tx = (Tx(n))n≥0 and Ux = (Ux(n))n≥1 where Tx(0) = 0 and

(Tx(n)− Tx(n− 1))n≥1

is a field of i.i.d. exponential random variables with mean 1/r(x). In addition, let U(0) be a
uniform variable on [0, 1), and all the random variables (Tx,Ux)x∈Ω and U(0) are independent
whose common law is denoted by P. Given (Tx,Ux)x∈Ω and U(0), we construct (X̃t)t≥0 in a
deterministic manner, and for convenience of the statement we fix a labeling for all the elements
of Ω as (yi)1≤i≤|Ω|. If ∑

j<i

ν(yj) ≤ U(0) <
∑
j≤i

ν(yj),
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we set X̃0 = yi. When the clock process Tx rings at time t = Tx(n) for n ≥ 1 and X̃t− = x, we
update X̃t− as follows:

(1) for r(x) = 0, we set X̃s = x for all s ≥ t;
(2) for r(x) > 0, if

r(x)−1
∑
j<i
yj ̸=x

r(x, yj) ≤ Ux(n) < r(x)−1
∑
j≤i
yj ̸=x

r(x, yj),

we set X̃t = yi.

From the graphical construction above, it is clear that the trajectory (X̃t)t≥0 is càdlàg and

P
[
X̃0 = x

]
= ν(x), ∀x ∈ Ω. (1.16)

When we emphasize the initial distribution of (X̃t)t≥0 as ν, we write (X̃ν
t )t≥0. In particular,

when ν = δx, we write (X̃x
t )t≥0. By the memoryless property of the Poisson clocks, we can adapt

the proof in [Lan18, Proposition 1.4], whose the details are left for the readers, to show that
P̃t(x, y) := P̃

[
X̃x
t = y

]
is well-defined and P̃t is a transition matrix, and that for 0 ≤ t1 < · · · <

tn < s and t > 0,

P
[
X̃s+t = y | X̃s = x; X̃tk = xk, ∀k ≤ n

]
= P

[
X̃s+t = y | X̃s = x

]
= P̃t(x, y) (1.17)

where the leftmost hand-side is only defined for the case P
[
X̃s = x; X̃tk = xk,∀k ≤ n

]
> 0. Our

next step is to show that P̃t satisfies the forward equation in the following proposition, and then
by the uniqueness of the solution to the forward equation we have Pt = P̃t. Therefore, the law
of (X̃t)t≥0 is P.

Proposition 1.4 (The forward equation). We have
d

dt
P̃t = P̃tL,

P̃0 = Id.

(1.18)

Therefore, for all t ≥ 0 we have Pt = P̃t.

Proof. From the graphical construction, it is clear that P̃0 = Id, and then we focus on
d
dt P̃t(x, y). For all h > 0 sufficiently small, and x, y ∈ Ω (including the case x = y), by (1.17) we
decompose the possible values of X̃x

t to obtain

P̃t+h(x, y)

=P
[
X̃x
t = y

]
P
[
X̃y
h = y

]
+
∑
z:z ̸=y

P
[
X̃x
t = z

]
P
[
X̃z
h = y

]
=P
[
X̃x
t = y

]
(1− r(y)h+ o(h)) +

∑
z:z ̸=y

P
[
X̃x
t = z

](
r(z)h · r(z, y)

r(z)
+ o(h)

)
.

(1.19)

By (1.19), we obtain the right derivative of P̃t(x, y), i.e.

lim
h→0+

1

h

(
P̃t+h(x, y)− P̃t(x, y)

)
=− P̃t(x, y)r(y) +

∑
z:z ̸=y

P̃t(x, z)r(z, y).
(1.20)
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Now we turn to the left derivative of P̃t(x, y). Similar to (1.19), we can replace t − h by t,
and decompose the possible values of X̃x

t−h to obtain

P̃t(x, y)

=P
[
X̃x
t−h = y

]
P
[
X̃y
h = y

]
+
∑
z:z ̸=y

P
[
X̃x
t−h = z

]
P
[
X̃z
h = y

]
=P
[
X̃x
t−h = y

]
(1− r(y)h+ o(h)) +

∑
z:z ̸=y

P
[
X̃x
t−h = z

](
r(z)h · r(z, y)

r(z)
+ o(h)

)
,

(1.21)

and then
lim
h→0+

|P̃t(x, y)− P̃t−h(x, y)| = 0. (1.22)

By (1.21) and (1.22), we obtain the left derivative of P̃t(x, y), i.e.

lim
h→0+

1

h

(
P̃t(x, y)− P̃t−h(x, y)

)
=− P̃t(x, y)r(y) +

∑
z:z ̸=y

P̃t(x, z)r(z, y).
(1.23)

Hence, writing in the matrix language, we have
d

dt
P̃t = P̃tL. (1.24)

By the uniqueness of the solution to the forward equation with given initial condition as Id
(stated in (1.6) and (1.18)), for all t ≥ 0 we have

Pt = P̃t.

□

Proof of (1.5). We know that P̃t satisfies

P̃t(x, y) ≥ 0, ∀x, y ∈ Ω;∑
y∈Ω

P̃t(x, y) = 1, ∀x ∈ Ω. (1.25)

By Proposition 1.4, we conclude the proof for (1.5).
□

1.2. The invariant probability measure. In this subsection, we discuss the existence
and uniqueness of invariant probability measures for a continuous-time Markov chain.

A probability measure µ on Ω is said to be invariant for the Markov chain associated with
the generator L if for all t > 0,

µPt = µ. (1.26)
In other words, for all y ∈ Ω, ∑

x∈Ω
µ(x)Pt(x, y) = µ(y). (1.27)

However, due to the complexity of the matrix Pt, it is difficult to verify the condition (1.27).
But the following lemma provides a feasible method.

Lemma 1.5. The following two conditions are equivalent

(∀t ≥ 0, µPt = µ) ⇔ (µL = 0) . (1.28)
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Proof. First assuming µPt = µ, by the backward equation (1.6) we obtain

0 =
d

dt
µ =

d

dt
µPt = µLPt. (1.29)

Multiplied by e−tL in both sides above, by (1.7) we conclude the proof.

Now we assume µL = 0, and by the backward equation (1.6) we obtain that for all t ≥ 0

d

dt
(µPt − µ) = µLPt = 0,

µP0 − µ = 0.
(1.30)

Therefore, for all t ≥ 0, µPt = µ. □

Detailed balance condition. The probability measure µ is said to satisfy the detailed balance
condition for the generator L, if for all x, y ∈ Ω

µ(x)r(x, y) = µ(y)r(y, x). (1.31)

Lemma 1.6. If µ satisfies the detailed balance condition, µ is an invariant probability measure
for the system (Ω,L).

Proof. By Lemma 1.5, we just need to check µL = 0. Equivalently, that is for all y ∈ Ω∑
x∈Ω

µ(x)r(x, y) =
∑
x:x ̸=y

µ(y)r(y, x)− µ(y)r(y) = 0 (1.32)

where the first equality uses the detailed balance condition and the last inequality uses r(y) =∑
x:x̸=y r(y, x). □

Existence and uniqueness. Before dealing with the uniqueness and existence of invariant
probability measures, we introduce the irreducibility which intuitively means that a Markov
chain can move between any two states.

Definition 1.7. The system (Ω,L) is said to be irreducible if for all x ̸= y ∈ Ω there exists
a path with vertices in Ω: Γxy = (z0, z1, · · · , zℓ) with z0 = x, zℓ = y and r(zk−1, zk) > 0 for all
1 ≤ k ≤ ℓ(x, y).

Theorem 1.8. If the system (Ω,L) is irreducible, there exists a unique invariant probability
measure µ for the Markov chain (Xt)t≥0 associated with L.

Proof. We reduce the issues of existence and uniqueness of the invariant probability measure
of a continuous-time Markov chain to that of an associated discrete-time Markov chain. First
we define the jumping instants of (Xt)t≥0 by S0 := 0, and for n ≥ 1

Sn+1 := inf {t ≥ Sn : Xt ̸= XSn} , (1.33)

and then define for all n ≥ 0,
Yn := XSn . (1.34)

From the graphical construction, we know that (Yn)n≥0 is a discrete-time Markov chain and for
x ̸= y ∈ Ω

P [Yn+1 = y|Yn = x] = r(x, y)/r(x). (1.35)
Let µ be an invariant probability measure for (Xt)t≥0, and by Lemma 1.5 we have for all y ∈ Ω,∑

x:x̸=y

µ(x)r(x, y) = µ(y)r(y) (1.36)
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which is the same as ∑
x:x̸=y

µ(x)r(x)
r(x, y)

r(x)
= µ(y)r(y). (1.37)

Therefore, the probability measure µ̃ on Ω defined by

∀y ∈ Ω, µ̃(y) :=
µ(y)r(y)∑
x∈Ω µ(x)r(x)

(1.38)

is invariant for (Yn)n≥0. Moreover, we can also write µ in terms of µ̃, i.e. for all y ∈ Ω

µ(y) =
µ̃(y)

r(y)

/∑
x∈Ω

µ̃(x)

r(x)
. (1.39)

By Definition 1.7, we know that the discrete-time chain (Yn)n≥0 is irreducible whose invariant
probability measure exists and is unique (c.f. [LP17, Proposition 1.14 and Corollary 1.17]). By
(1.38) and (1.39), we know that there exists a unique invariant probability measure for the
continuous-time chain (Xt)t≥0.

□

Convergence to equilibrium. Now we are concerned about the following convergence theorem.

Theorem 1.9. If the system (Ω,L) is irreducible, the distribution of (Xt)t≥0 converges to its
unique invariant probability measure µ, i.e.

lim
t→∞

∑
y∈Ω

∣∣∣P [Xt = y]− µ(y)
∣∣∣ = 0. (1.40)

We postpone the proof of Theorem 1.9 in Section 2 where we will use coupling provided by
the graphical construction and the following lemma.

Lemma 1.10. Assuming that the system (Ω,L) is irreducible, for all x, y ∈ Ω (including
x = y) and all t > 0 we have

Pt(x, y) > 0. (1.41)

Proof. By Pt = (Pt/n)
n for all n ∈ N, we just need to prove (1.41) for all t > 0 sufficiently

small. By the definition of Pt, we know that for t ≥ 0 sufficiently small,

Pt = Id + tL+O(t2). (1.42)

Therefore, for t > 0 sufficiently small and x ̸= y satisfying L(x, y) > 0, we have

Pt(x, x) > 0 and Pt(x, y) > 0. (1.43)

For x ̸= y with L(x, y) = 0, let Γxy be a shortest path connecting x with y and ℓ(x, y) := |Γxy|,
and then (L)ℓ(x, y) > 0 and (L)k(x, y) = 0 for all k < ℓ. Since for t > 0 sufficiently small

Pt = Id +

ℓ∑
k=1

tkLk

k!
+O(tℓ+1), (1.44)

we have Pt(x, y) > 0. As |Ω| < ∞, for all t > 0 sufficiently small we have Pt(x, y) > 0 for all
x, y ∈ Ω. □
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2. Markov chain mixing

From now on, we always assume that the system (Ω,L) is irreducible. As we have seen
in last section, an irreducible continuous-time Markov chain in finite state space will converge
to its equilibrium measure. We are interested in how long the chain takes to approximate its
equilibrium measure with prescribe distance, which is mixing time and the center topic of the
thesis. In this section, we introduce the total variation mixing time, and give a relation between
mixing times at different prescribed distances.

As mentioned above, we need to assign a distance between the equilibrium measure µ and
P [Xν

t = ·], i.e. the distribution of the chain (Xν
t )t≥0 at time t. Generally speaking, for two

probability measures α, β on Ω, we define the distance between them to be

∥α− β∥TV := sup
A⊂Ω

|α(A)− β(A)| . (2.1)

This is the the total variation distance which measures the largest possible difference between
two probability measures assigned to the same event. As we want to sample the observables and
spatial properties of a system from the dynamics, the total variation distance tells the confidence
interval. That is why the total variation distance is widely used in Markov chain mixing. Note
that

∥α− β∥TV =
1

2

∑
x∈Ω

|α(x)− β(x)| (2.2)

where the last equality is by α(A)− β(A) = −
(
α(A∁)− β(A∁)

)
and

sup
A⊂Ω

(α(A)− β(A)) =
∑

x:α(x)≥β(x)

(α(x)− β(x)) = −
∑

x:α(x)<β(x)

(α(x)− β(x)) . (2.3)

For another probability measure γ on Ω, due to the triangle inequality

|α(x)− β(x)| ≤ |α(x)− γ(x)|+ |γ(x)− β(x)|,

we have
∥α− β∥TV ≤ ∥α− γ∥TV + ∥γ − β∥TV.

That is to say, the total variation distance is a metric. The following proposition says that the
total variation distance measures how well we can couple two random variables with distribution
laws α and β respectively. We say that ϑ is a coupling of α and β, if ϑ is a probability measure
on Ω × Ω such that ϑ(x × Ω) = α(x) and ϑ(Ω × y) = β(y) for any elements x, y ∈ Ω. We refer
to [LP17, Proposition 4.7] for a complete proof.

Proposition 2.1. Let α and β be two probability distributions on Ω, and then

∥α− β∥TV = inf
{
ϑ ({(x, y) : x ̸= y}) : ϑ is a coupling of α and β.

}
.

Moreover, there exists a coupling which attains the infimum above.

Furthermore, the operator Pt, defined in (1.14), is contractive which is the following lemma.

Lemma 2.2. We have
∥αPt − βPt∥TV ≤ ∥α− β∥TV, (2.4)

and then
∥αPt − µ∥TV ≤ ∥α− µ∥TV. (2.5)
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Proof. Note that

2∥αPt − βPt∥TV =
∑
y∈Ω

|(αPt)(y)− (βPt)(y)|

=
∑
y∈Ω

∣∣∣∣∣∑
x∈Ω

(α(x)− β(x))Pt(x, y)

∣∣∣∣∣
≤
∑
y∈Ω

∑
x∈Ω

|(α(x)− β(x))|Pt(x, y)

= 2∥α− β∥TV,

(2.6)

where we use the triangle inequality in the inequality, and interchange the sum orders of x, y.
Concerning (2.5), by µPt = µ we take β = µ in (2.4) to conclude the proof. □

By Theorem 1.9 and Lemma 2.2, the total variation distance between the distribution of a
continuous-time chain and its equilibrium is decreasing. Since a chain can start with any initial
distribution, we define the distance to equilibrium as

d(t) := sup {∥νPt − µ∥TV : ν is a probability measure on Ω}
= max

x∈Ω
∥Pt(x, ·)− µ∥TV,

(2.7)

where we have used

∥νPt − µ∥TV =

∥∥∥∥∥∑
x∈Ω

ν(x)Pt(x, ·)− µ

∥∥∥∥∥
TV

≤
∑
x∈Ω

ν(x)∥Pt(x, ·)− µ∥TV.

By Lemma 2.2, the function d(t) is decreasing. Furthermore, we are interested in how long the
Markov chain with the worst initial distribution needs to be within a prescribed distance to
equilibrium. That is, for given ε ∈ (0, 1), the ε−mixing-time is defined to be

tmix(ε) := inf {t ≥ 0 : d(t) ≤ ε} . (2.8)

For simplicity of notation, we write tmix := tmix(1/4).
In the study of mixing, we define another distance to equilibrium as

d̄(t) := sup
x,y∈Ω

∥Pt(x, ·)− Pt(y, ·)∥TV, (2.9)

and we have
d(t) ≤ d̄(t) ≤ 2d(t) (2.10)

which is a corollary of µPt = µ and the triangle inequality. With (2.10), now we are ready for
the proof of Theorem 1.9.

Proof of Theorem 1.9. Note that the graphical construction in Subsection 1.1 provides
a coupling such that all the dynamics {(Xx

t )t≥0 : ∀x ∈ Ω} live in one common probability space.
For the two dynamics (Xx

t )t≥0 and (Xy
t )t≥0 starting from x, y ∈ Ω respectively, we define their

coalesce time to be
τxy := inf {t ≥ 0 : Xx

t = Xy
t } . (2.11)

For all t ≥ τxy, from the graphical construction we know that

Xx
t = Xy

t .

Therefore, by Proposition 2.1 we have

d(t) ≤ d̄(t) ≤ sup
x,y

P [Xx
t ̸= Xy

t ] = sup
x,y

P [τxy > t] . (2.12)
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For fixed t0 > 0, by Lemma 1.10 we have

λ := min
x,y,z

Pt0(x, z)Pt0(y, z) > 0. (2.13)

Moreover, observe that by the graphical construction, before coalesce, two Markov chains starting
from initial states x, y are independent. Therefore, they will coalesce before t0 with probability
at least λ. Then by Markov property, for any positive integer n we have

P [τxy > nt0] ≤ (1− λ)n. (2.14)

Since the function d(t) is decreasing, by (2.12) and (2.14) we obtain

lim
t→∞

d(t) = 0.

□

The remaining of this section is concerned with the question: what is the decay rate of the
distance to equilibrium? We answer this question in terms of tmix.

2.1. The decay rate of the distance to equilibrium in terms of tmix. We are con-
cerned with the decay rate of the distance to equilibrium in terms of tmix, which is the following
proposition.

Proposition 2.3. For all t ≥ 0, we have

d(t) ≤ 2−⌊t/tmix⌋, (2.15)

and for ε ∈ (0, 1)

tmix(ε) ≤
⌈
− log ε

log 2

⌉
tmix. (2.16)

For the proof of Proposition 2.3, with the inequality (2.10), we still need to show that the
function d̄(t) is submultiplicative, which is in the following lemma.

Lemma 2.4. The function d̄(t) is submultiplicative, i.e. for s, t ≥ 0,

d̄(s+ t) ≤ d̄(s)d̄(t). (2.17)

Proof. Recall that (Xx
t )t≥0 and (Xy

t )t≥0 are two continuous-time Markov chains starting
from x, y respectively, and their marginal distributions at time instant s are Ps(x, ·) and Ps(y, ·)
respectively. By Proposition 2.1, there exists a coupling probability measure ϑ on Ω × Ω such
that their marginal distributions are Ps(x, ·) and Ps(y, ·) respectively and

∥Ps(x, ·)− Ps(y, ·)∥TV = ϑ [Xx
s ̸= Xy

s ] . (2.18)

We observe that

Ps+t(x, z) =
∑
w∈Ω

Ps(x,w)Pt(w, z) =
∑
w∈Ω

ϑ(Xx
s = w)Pt(w, z) = Eϑ [Pt(Xx

s , z)] (2.19)

where Eϑ denotes the expectation with respect to ϑ. Similarly, we have

Ps+t(y, z) = Eϑ [Pt(Xy
s , z)] . (2.20)
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Moreover,

∥Ps+t(x, ·)− Ps+t(y, ·)∥TV =
1

2

∑
z∈Ω

|Ps+t(x, z)− Ps+t(y, z)|

=
1

2

∑
z∈Ω

|Eϑ [Pt(Xx
s , z)]− Eϑ [Pt(Xy

s , z)] |

≤ Eϑ

[
1

2

∑
z∈Ω

|Pt(Xx
s , z)− Pt(X

y
s , z)|

]
≤ Eϑ

[
d̄(t)1{Xx

s ̸=X
y
s }

]
≤ d̄(t)d̄(s).

(2.21)

Since x, y ∈ Ω are arbitrary, we conclude (2.17).
□

Proof of Proposition 2.3. By (2.10) and Lemma 2.4, we have

d (ntmix) ≤ d̄ (ntmix) ≤ d̄ (tmix)
n ≤ 1

2n
. (2.22)

We take n ∈ N such that the rightmost hand side of (2.22) is smaller than or equal to ε to
conclude the proof.

□

3. Eigenvalues

The fact that the distribution of Xν
t is νPt and Pt = etL suggests us to investigate the

eigenvalues and eigenfunctions of L to understand how the function νPt evolves. Therefore
we can tell how long the dynamics (Xν

t )t≥0 needs to relax to equilibrium. In this section,
we assume that the invariant measure µ for the irreducible system (Ω,L) satisfies the detailed
balance condition in (1.31), so that we can introduce the eigenvalues (including spectral gap)
and eigenfunctions of the generator L. Furthermore, we study the relation between mixing time
and spectral gap.

3.1. Eigenvalues and eigenfunctions of L. To prepare the statement for the following
proposition, we introduce an inner product denoted by ⟨·, ·⟩µ on RΩ defined by (for f, g ∈ RΩ)

⟨f, g⟩µ :=
∑
x∈Ω

µ(x)f(x)g(x).

Proposition 3.1. Under the assumption of irreducibility and detailed balance condition, the
inner product space (RΩ, ⟨·, ·⟩µ) has an othonormal basis (Φi)

|Ω|
i=1 which are eigenfunctions of L

corresponding to real eigenvalues {−λi}|Ω|
i=1. More precisely,

LΦi = −λiΦi,
⟨Φi,Φj⟩µ = δij ,

(3.1)

where δij represents the delta of Kronecker and 0 = −λ1 > −λ2 ≥ −λ3 ≥ · · · ≥ −λ|Ω|. Moreover,
for the semi-group Pt = etL, we have

PtΦi = e−λitΦi. (3.2)



22 1. INTRODUCTION

Proof. To study eigenvalues and eigenfunctions of L, we turn to that of a symmetric matrix
A such that A(x, y) = A(y, x) for all x, y ∈ Ω. With the assumption (1.31), we define the matrix
A as: for all x, y ∈ Ω

A(x, y) := µ(x)1/2 · r(x, y) · µ(y)−1/2 = µ(y)1/2 · r(y, x) · µ(x)−1/2 = A(y, x), (3.3)

so that the matrix A : Ω× Ω 7→ R is symmetric. We introduce the usual inner product ⟨·, ·⟩ on
R given by (for f, g ∈ RΩ)

⟨f, g⟩ :=
∑
x∈Ω

f(x)g(x).

From the spectral theorem about symmetric matrix, there is an orthonormal basis (ϕi)
|Ω|
i=1 such

that ϕi is an eigenfunction with real eigenvalue −λi, i.e. Aϕi = −λiϕj and for all 1 ≤ i, j ≤ |Ω|

⟨ϕi, ϕj⟩ = δij .

Moreover, the function √
µ = (

√
µ(x))x∈Ω is an eigenfunction with eigenvalue 0, since for all

x ∈ Ω,
∑

y∈Ω r(x, y) = 0.

Now we translate the eigenvalues and eigenfunctions of A to that of L. Let Dµ be a diagonal
matrix with diagonal entry at (x, x) be µ(x), and then A = D

1/2
µ LD−1/2

µ . Define Φi := D
−1/2
µ ϕi

for all 1 ≤ i ≤ |Ω|, and then

LΦi = −λiΦi,

PtΦi = etLΦi = e−λitΦi,

⟨Φi,Φj⟩µ = ⟨D1/2
µ Φi, D

1/2
µ Φj⟩ = δij .

(3.4)

That is to say, (Φi)1≤i≤|Ω| is an orthonormal basis of the space (RΩ, ⟨·, ·⟩µ).
We order the eigenvalues as −λ1 ≥ −λ2 ≥ · · · ≥ −λ|Ω|, and claim λ1 = 0. Since Pt is a

stochastic matrix, for any function f ∈ RΩ we have

max
x∈Ω

|(Ptf)(x)| ≤ max
x∈Ω

|f(x)| (3.5)

and then −λ1 ≤ 0. Moreover, the eigenfunction Φ1 = D
−1/2
µ

√
µ = 1 corresponds to the eigen-

value 0. Therefore λ1 = 0.
We now argue that −λ2 < 0 as we assume the Markov chain on Ω with generator L is

irreducible. We argue by contradiction, supposing that −λ2 = 0. Then we have
PtΦ2 = Φ2,

⟨ϕ1, ϕ2⟩ = ⟨√µ,D1/2
µ Φ2⟩ =

∑
x∈Ω

µ(x)Φ2(x) = 0. (3.6)

By irreducible assumption and (1.41), we investigate the equality PtΦ2 = Φ2 at the coordinate
y ∈ Ω such that Φ2(y) = maxx∈ΩΦ2(x). We can see that Φ2 is a constant function, which can
not satisfy the second equality in (3.6). Therefore, we have −λ2 < 0. □

Definition 3.2. Assuming the irreducibility and the detailed balance condition, we define
the spectral gap of the Markov chain to be

gap := λ2, (3.7)

which is also referred to as the minimal nonzero eigenvalue of −L, and define the relaxation time
as the inverse of the spectral gap, i.e.

trel := gap−1 = λ−1
2 . (3.8)
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To state a variational formula for the spectral gap we rely on the Dirichlet form defined by
(for f ∈ RΩ)

E(f) := −⟨f,Lf⟩µ =
1

2

∑
x,y∈Ω

µ(x)r(x, y)f(x) (f(x)− f(y))

+
1

2

∑
x,y∈Ω

µ(y)r(y, x)f(y) (f(y)− f(x))

=
1

2

∑
x,y∈Ω

µ(x)r(x, y) (f(x)− f(y))2

(3.9)

where we have used µ(x)r(x, y) = µ(y)r(y, x) in the last equality. The variational formula is in
the following lemma.

Lemma 3.3. Let Varµ(f) := ⟨f, f⟩µ − ⟨f,1⟩2µ, and then we have

gap = inf
Varµ(f)>0

−⟨f,Lf⟩µ
Varµ(f)

. (3.10)

Proof. Since (Φi)
|Ω|
i=1 is an orthonormal basis of the inner product space (RΩ, ⟨·, ·⟩µ), we can

write f ∈ RΩ in terms of (Φi)
|Ω|
i=1 as follows:

f =

|Ω|∑
i=1

⟨f,Φi⟩µΦi. (3.11)

Therefore, we have

E(f) = −⟨f,Lf⟩µ = −

〈 |Ω|∑
i=1

⟨f,Φi⟩µΦi,
|Ω|∑
i=1

⟨f,Φi⟩µLΦi

〉
µ

=

|Ω|∑
i=2

λi⟨f,Φi⟩2. (3.12)

where we have used ⟨Φi,Φj⟩µ = δij and LΦ1 = L1 = 0. Similarly, we have

Varµ(f) =

|Ω|∑
i=2

⟨f,Φi⟩2µ (3.13)

where we have used Φ1 = 1. For f ∈ RΩ satisfying Varµ(f) > 0, there exists i0 ≥ 2 such that

⟨f,Φi0⟩µ ̸= 0.

Furthermore, we recall that 0 = −λ1 > −λ2 ≥ gl3 ≥ · · · ≥ −λ|Ω| and then we have

E(f)
Varµ(f)

=

∑|Ω|
i=2 λi⟨f,Φi⟩2∑|Ω|
i=2⟨f,Φi⟩2µ

≥ λ2. (3.14)

Moreover, when we take f = Φ2, we attain the equality in (3.14). Therefore, we conclude the
proof. □

Analogously, we can repeat the proof in Lemma 3.3 to obtain for f ∈ RΩ

Varµ(Ptf) ≤ e−2t·gapVarµ(f) (3.15)

where the equality is attainable for f = Φ2. Therefore, the spectral gap tells the decay rate of
the function Ptf . Furthermore, we will show a similar inequality for νPt which is the distribution
of Xν

t , and we will see that the spectral gap is deeply related with the time for the dynamics
(Xν

t )t≥0 to relax to equilibrium.
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3.2. The decay rate of the distance to equilibrium in terms of the relaxation
time. In the following, we mimic the proof in [LP17, Theorem 12.4] to tell the decay rate of the
distance to equilibrium in terms of the relaxation time.

Theorem 3.4. Assume that the system (Ω,L) is irreducible and reversible with respect to µ,
and let µmin := minx∈Ω µ(x). For ε ∈ (0, 1), we have

tmix(ε) ≤ trel log
1

2εµmin
, (3.16)

tmix(ε) ≥ trel log
1

2ε
, (3.17)

lim
t→∞

1

t
log d(t) = −gap, (3.18)

where trel is the relaxation time defined in (3.8).

Proof. We first deal with (3.16) by observing

2∥Pt(x, ·)− µ∥TV =
∑
y∈Ω

∣∣∣∣Pt(x, y)µ(y)
− 1

∣∣∣∣µ(y). (3.19)

We write Pt(x, y) =
(
Pt1{y}

)
(x) in term of the eigenfunctions (Φi)1≤i≤|Ω| stated in Proposition

3.1. Since

1{y} =

|Ω|∑
i=1

⟨1{y},Φi⟩µΦi = µ(y)

|Ω|∑
i=1

Φi(y)Φi, (3.20)

we have

Pt(x, y) = µ(y)

|Ω|∑
i=1

Φi(y)(PtΦi)(x) = µ(y)

|Ω|∑
i=1

Φi(y)e
−λitΦi(x). (3.21)

Recalling Φ1 = 1 and λ1 = 0, we have∣∣∣∣Pt(x, y)µ(y)
− 1

∣∣∣∣ =
∣∣∣∣∣∣
|Ω|∑
i=2

Φi(y)e
−λitΦi(x)

∣∣∣∣∣∣
≤ e−λ2t

 |Ω|∑
i=2

Φi(y)
2

1/2 |Ω|∑
i=2

Φi(x)
2

1/2

,

(3.22)

where we have used Cauchy-Schwarz inequality in the inequality above. In order to give an upper
bound on the right-hand side of (3.22), we rely on (3.20) to obtain

|Ω|∑
i=2

Φi(y)
2 ≤ 1

µ(y)
≤ 1

µmin
. (3.23)

Therefore, we have

∥Pt(x, ·)− µ∥TV =
1

2

∑
y∈Ω

µ(y)

∣∣∣∣Pt(x, y)µ(y)
− 1

∣∣∣∣ ≤ e−λ2t
1

2µmin
, (3.24)

where we take the right-hand side smaller than ε to obtain (3.16).
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We now turn to (3.17). We take the eigenfunction Φ2 to obtain∣∣∣e−λ2tΦ2(x)
∣∣∣ = |(PtΦ2)(x)| =

∣∣∣∣∣∣
∑
y∈Ω

Pt(x, y)Φ2(y)−
∑
y∈Ω

µ(y)Φ2(y)

∣∣∣∣∣∣
≤ 2d(t)∥Φ2∥∞

(3.25)

where ∥f∥∞ := maxx∈Ω |f(x)| for f ∈ RΩ, and we have used

⟨1,Φ2⟩µ =
∑
y∈Ω

µ(y)Φ2(y) = 0,

sup
f∈RΩ:∥f∥∞≤1

∣∣∣∣∣∣
∑
y∈Ω

Pt(x, y)Φ2(y)−
∑
y∈Ω

µ(y)f(y)

∣∣∣∣∣∣ = 2 ∥Pt(x, ·)− µ∥TV .

We take x0 ∈ Ω satisfying |Φ2(x0)| = ∥Φ2∥∞ in (3.25) to obtain (3.17).
Now we head to (3.18). By (3.24), we have

lim sup
t→∞

1

t
log d(t) ≤ −λ2 = −gap. (3.26)

From (3.25), we obtain

lim inf
t→∞

1

t
log d(t) ≥ −λ2 = −gap. (3.27)

Combining (3.26) with (3.27), we conclude the proof for (3.18).
□

4. Cutoff phenomenon

In out-of-equilibrium of statistical mechanics, to model the dynamical evolution of a physical
system we consider a sequence of Markov chains with state space size going to infinity, and the
sequence of chains will be naturally indexed by the systems size. That is to say, let (Ωn,Ln)
be a system with a unique invariant probability measure µn, and let t(n)mix(ε) be the associated
ε−mixing-time. The central topic in the thesis is to study how the function t

(n)
mix(ε) grows in

terms of n and ε.
We say that the sequence of Markov chains (Ωn,Ln)n∈N has a cutoff if for all ϵ ∈ (0, 1),

lim
n→∞

t
(n)
mix(ϵ)

t
(n)
mix(1− ϵ)

= 1. (4.1)

Moreover, there is another equivalent definition as follow:

lim
n→∞

dn

(
ct

(n)
mix

)
=

{
1 if c < 1,

0 if c > 1.
(4.2)

In other words, the sequence of Markov chains (Ωn,Ln)n∈N suddenly transitions from being
poorly mixed to being well mixed. The cutoff phenomenon is first discovered in [DS81] and
surveyed in the seminal paper [Dia96], and we refer to [LP17, Chapter 18] for more information.
There are many Markov chains exhibiting the cutoff phenomenon for example: the riffle shuffle
of a deck of n cards [BD92], the lazy random biased random walk on a line segment [LP17,
Theorem 18.2], the symmetric simple random walk in the hypercube [LP17, Theorem 18.3]. In
[Dia96, Section 5], Diaconis wrote:

At present writing, proof of a cutoff is a difficult, delicate affair, requiring
detailed knowledge of the chain, such as all eigenvalues and eigenvectors.
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A step toward cutoff is to prove a precutoff for the sequence of Markov chains, that is,

sup
ε∈(0, 1

2
)

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

<∞. (4.3)

By the definitions of cutoff and precutoff, we can see that cutoff implies precutoff. However, there
exists an example in which precutoff holds but cutoff does not, and we refer to [LP17, Notes in
Chapter 18] for such an example due to Aldous. Furthermore, there are many Markov chains
for which only precutoff has been proved and for which cutoff is predicted such as the symmetry
simple exclusion process on a line segment with open boundaries [GNS20]. Indeed, there also
exist examples where there are no precutoff phenomena, and we refer to [LP17, Examples 18.5,
18.6].

5. What is done in the thesis?

In this section, we give macroscopic pictures and main ideas of the following three chapters
where the last two chapters are based on joint works with Hubert Lacoin.

5.1. Chapter 2: Cutoff for polymer pinning dynamics in the repulsive phase.
Background. The study of effective interface models is a large field in statistical mechanics,

in particular for the problem of wetting of a random walk which dates back to the seminal
paper of [Fis84]. Several variants and generalizations of the model have been considered since
then, and we refer to [Gia07, Gia11] for recent reviews. A polymer is a substance composed of
many monomers, and between any two consecutive monomers there is a bond connecting them.
A polymer interacts with a colloid or an attractive (repulsive) substrate, gaining rewards or
penalty from the interaction.

Model. We model polymers in the framework of statistical mechanics in a simplest setting.
• We represent the colloid (substrate) by an impenetrable half-space.
• The polymers are modeled by the paths of the one-dimensional nearest-neighbor simple

random walk, stretching in one direction to avoid the self-interaction of the polymers.
For simplification, we choose the state space to be

ΩL :=
{
ξ ∈ ZL+1

+ : ξ0 = ξL = 0 ; ∀x ∈ J1, LK, |ξx − ξx−1| = 1
}
, (5.1)

which is the set of nonnegative integer-value one-dimensional nearest-neighbor paths, starting
at 0 and ending at 0 after L steps where L ∈ 2N. Each path ξ ∈ ΩL is given a probability
proportional to λN (ξ), where λ ≥ 0 is a parameter modeling the intensity of the interaction
between the polymer and the x−axis (the impenetrable wall) and N (ξ) is the amount of contacts
with the wall given by

N (ξ) :=
L−1∑
x=1

1{ξx=0}. (5.2)

That is to say, we define a probability measure µλL on ΩL as

µλL(ξ) :=
λN (ξ)

ZL(λ)
(5.3)

where ξ ∈ ΩL and ZL(λ) is the partition function given by

ZL(λ) :=
∑
ξ′∈ΩL

λN (ξ′). (5.4)
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The partition function encodes some information concerning the equilibrium behavior of the
polymer such as the contact fraction

1

L

d logZL(λ)

d log λ
=

1

L

∑
ξ∈ΩL

N (ξ)λN (ξ)

ZL(λ)
= µλL

(
N (ξ)

L

)
. (5.5)

In the static aspect, we have the following detailed asymptotics for the partition function (cf.
[Gia07, Theorem 2.2])

2−LZL(λ) =


(1 + o(1))CλL

−3/2 if λ ∈ [0, 2),

(1 + o(1))C2L
−1/2 if λ = 2,

(1 + o(1))Cλe
LF (λ) if λ > 2,

(5.6)

where F (λ) = 1{λ>2} log
λ

2
√
λ−1

. By Hölder inequality, for θ ∈ [0, 1] and λ1, λ2 > 0, we have

ZL(λ
θ
1λ

1−θ
2 ) ≤ ZL(λ1)

θZL(λ2)
1−θ,

so that the function F (λ) = limL→∞
1
L logZL(λ)− log 2 is a convex function of log λ and differ-

entiable with respect to log λ. Therefore, we can interchange the positions of limit and derivative
to obtain

dF (λ)

d log λ
= lim

L→∞
µλL

(
N (ξ)

L

){
= 0, if λ ≤ 2,

> 0, if λ > 2.
(5.7)

We can see that this model displays a transition from a delocalized phase to a localized phase (see
[CMT08, Section 1]): (a) if 0 ≤ λ < 2, the expected number of contacts µλL(N (ξ)) is uniformly
bounded in L and the height of the middle point ξL/2 is typically of order

√
L; (b) if λ > 2, the

amount of contacts with the x−axis of typical paths is of order L and the distribution of the
height of the middle point ξL/2 is (exponentially) tight in L. These two phases are referred to as
the delocalized/localized phase respectively, at the critical point λ = 2 the system displays an
intermediate behavior.

We are interested in the classical heat-bath dynamics to equilibrium, which equilibrates the
value of each ξx at rate one via corner-flip. It was first studied by Caputo et al. in [CMT08] .
To clarify how to flip a corner, for ξ ∈ ΩL and x ∈ J1, L− 1K we define ξx ∈ ΩL by

ξxy :=


ξy if y ̸= x,

(ξx−1 + ξx+1)− ξx if y = x and ξx−1 = ξx+1 ≥ 1 or ξx−1 ̸= ξx+1,

ξx if y = x and ξx−1 = ξx+1 = 0.

(5.8)

When ξx−1 = ξx+1, ξ displays a local extremum at x and we obtain ξx by flipping the corner of ξ
at the coordinate x, provided that ξx ∈ ΩL (this excludes corner-flipping when ξx−1 = ξx+1 = 0.).
See Figure 1 for a graphical representation. Moreover, a generator L of a continuous-time Markov
chain on ΩL is given by (for f : ΩL → R)

(Lf)(ξ) :=
L−1∑
x=1

Rx(ξ)
[
f(ξx)− f(ξ)

]
, (5.9)

and

Rx(ξ) :=


1
2 if ξx−1 = ξx+1 > 1,
λ

1+λ if (ξx−1, ξx, ξx+1) = (1, 2, 1),
1

1+λ if (ξx−1, ξx, ξx+1) = (1, 0, 1),

0 if ξx−1 ̸= ξx+1 or ξx−1 = ξx+1 = 0.
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The reader can check that µλL satisfies the detailed balance condition i.e.

µλL(ξ)Rx(ξ) = µλL(ξ
x)Rx(ξ

x),

and thus µλL is the invariant probability measure for the system (ΩL,L). Our work focuses on
the study of the mixing time for this dynamics (and small variations of it). Let us introduce first
the results that have been previously obtained for comparison.

0 L

1
2

1
1+λ

× ×

λ
1+λ

1
2

ξ

y

x

Figure 1. A graphical representation of the jump rates for the system pinned at (0, 0) and
(L, 0). A transition of the dynamics corresponds to flipping a corner, whose rate depends on
how it changes the number of contact points with the x-axis. The rates are chosen in a manner
such that the dynamics is reversible with respect to µλ

L. The two red dashed corners are not
available and labeled with ×, because of the nonnegative restriction of the state space ΩL. Note
that not all the possible transitions are shown in the figure.

Previous results. As in (2.8), let tL,λmix(ε) denote the ε−mixing-time of the system (ΩL,L)
with parameter λ. The following has been proved in [CMT08]:

• if 0 ≤ λ < 2, then for all ε ∈ (0, 1)

1

2π2
≤ lim inf

L→∞

tL,λmix(ε)

L2 logL
≤ lim sup

L→∞

tL,λmix(ε)

L2 logL
≤ 6

π2
(5.10)

and there exists a positive constant C > 0 independent of λ such that

1− cos
(π
L

)
≤ gapL,λ ≤ CL−2. (5.11)

Equation (5.10) implies that the dynamic displays pre-cutoff (see (4.3) above) for λ ∈
[0, 2). For λ = 2, tL,2mix and gapL,2 are conjectured to behave as (5.10) and (5.11)
respectively, we refer to [CMT08] for more details.

• if λ > 2, Caputo et al. showed that there exists a positive constant C > 0 independent
of λ such that

lim inf
L→∞

tL,λmix

L2
≥ C, (5.12)

and
gapL,λ ≥ c(λ)L−1. (5.13)

In [CMT08], they believed that the lower bounds about tL,λmix and gapL,λ are sharp up
to a constant factor.

Our results. In Chapter 2, we obtain sharper estimates concerning the mixing time in the
regime λ ∈ [0, 2). First we prove that cutoff holds when λ ∈ [0, 1] by improving both the lower
bound and the upper bound (by a factor 2 and 6 respectively).

Theorem 5.1 (Theorem 1.1 of Chapter 2). For λ ∈ [0, 1] and all ε ∈ (0, 1), we have

lim
L→∞

π2tL,λmix(ε)

L2 logL
= 1. (5.14)
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For λ ∈ (1, 2), we provide a partial result similar to (5.14). Namely, we prove that cutoff holds
for the mixing time of Markov chains starting from extremal conditions. Let ∧ and ∨ respectively
denote the highest and lowest configuration in ΩL (see the definition (1.17) in Chapter 2 for a
definition). We define

t̆L,λmix(ε) := inf
{
t ≥ 0 : d∨,∧L (t) ≤ ε

}
(5.15)

where (recall that Pt is the semi-group associated with the dynamics)

d∨,∧L (t) = max
(
∥Pt(∧, ·)− µλL∥TV, ∥Pt(∨, ·)− µλL∥TV

)
. (5.16)

We prove the following:

Theorem 5.2 (Theorem 1.1 of Chapter 2). For λ ∈ (1, 2) and all ε ∈ (0, 1), we have

lim
L→∞

π2t̆L,λmix(ε)

L2 logL
= 1. (5.17)

Let us conclude the presentation by giving a short insight about the techniques used in
Chapter 2.

Main idea for the lower bound on the mixing time for λ ∈ [0, 2). As in [CMT08] we investigate
the time evolution of the weighted area function Φ: ΩL → R defined by

Φ(ξ) :=
L−1∑
x=1

ξx sin
(πx
L

)
, (5.18)

which is almost the area enclosed by the x-axis and the path ξ ∈ ΩL. The function Φ was
introduced in [Wil04, Equation (1)], which is the eigenfunction corresponding to the principle
mode of the heat equation. Under equilibrium µλL, Φ is at most of order L3/2, while for the
dynamics (σ∧t )t≥0 starting from the highest path, Φ is initially of order L2. We show that the
time needed for Φ(σ∧t ) to become of order L3/2 is at least (1−o(1)) 1

π2L
2 logL. Our improvement

w.r.t. to the approach in [CMT08], which allows to gain a factor 2 in the lower bound estimate,
is that instead of simply controlling the first and second moments, we use more refined estimates
involving martingale techniques (more precisely, the control of the bracket of a martingale closely
related to Φ(σ∧t )).

Main idea for the upper bound on the mixing time when λ ∈ [0, 1]. We can reduce the
problem to that of the coupling of a dynamic starting from the highest path (σ∧t )t≥0 and a
dynamic (σξt )t≥0 starting from an arbitrary initial configuration. For this coupling we use a
specific graphical construction which conserves the order. We need to bound the coalescing time

τ := inf{t > 0 : σ∧t = σµt }.
Inspired by [Wil04, Equation (1)], we define a function Φ: ΩL → [0,∞) given by

Φ(ξ) :=

L−1∑
x=1

ξx cos

(
β(x− L

2 )

L

)
where β < π and β is chosen sufficiently close to π. When λ ∈ [0, 1], the process At :=
Φ(σ∧t )− Φ(σµt ) is a nonnegative supermartingale (positivity comes the fact that our coupling is
order-preserving) and τ corresponds to the hitting time of 0 by At. We use Wilson’s argument
to show that the decay rate of E[At] is at least 1 − cos(β/L) so that at time t0 = 1+δ

π2 L
2 logL,

At is much smaller than L3/2. Then for t ≥ t0, we rely on a refined study of the variations of At,
borrowing techniques from [LL20], to show that it only takes an extra amount of time of order
L2 for At to shrink from L3/2 to zero.
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Main idea for the upper bound on the mixing time when λ ∈ (1, 2). When λ ∈ (1, 2), the
above technique breaks down since in that case At is not a super-martingale. In that case, we
use a different approach based on the Peres-Winkler censoring inequality [PW13, Theorem 1.1].
This approach heavily depends on starting from an initial condition which is extremal, hence our
partial result.

5.2. Chapter 3: Metastability for expanding bubbles on a sticky substrate.
Model. The model we consider is a close relative of the polymer pinning model considered

in Chapter 2, but this time we consider a polymer which is also subjected to another external
force, and this force pulls the polymer interface away from the wall. Since the two chapters have
slightly different notation conventions, let us reintroduce the state space setting

ΩN :=
{
ξ ∈ Z2N+1

+ : ξ0 = ξ2N = 0 ; ∀x ∈ J1, 2NK, |ξx − ξx−1| = 1
}
. (5.19)

For ξ ∈ ΩN , we denote by H and A respectively the number of zeros and the (algebraic) area
between the path and the horizontal axis

H(ξ) :=

2N−1∑
x=1

1{ξx=0} and A(ξ) :=

2N∑
x=1

ξx.

We define a probability measure on ΩN using a Gibbs weight constructed from an Hamiltonian
which is the sum of two terms, one proportional to the area and another one proportional to the
number of contacts. We rescale the area by a factor N so that these two effects play on the same
scale. Given λ ≥ 0 and σ ∈ R, we define µλ,σN on ΩN by

µλ,σN (ξ) :=
2−2NλH(ξ) exp

(
σ
NA(ξ)

)
ZN (λ, σ)

(5.20)

where ZN (λ, σ) is the partition function, given by

ZN (λ, σ) := 2−2N
∑
ξ′∈ΩN

λH(ξ′) exp
(
σ
NA(ξ

′)
)
. (5.21)

By convention, 00 := 1 and 0k := 0 for any positive integer k ≥ 1. The factor 2−2N is irrelevant
for the definition of µλ,σN but is convenient for statements about the partition function. When it
is clear from the context, we omit the indices λ and σ in µλ,σN . The graph of ξ depicts the spatial
configuration of an interface (see Figure 2).

The equilibrium measure µλ,σN describes the static behavior of the polymers. Furthermore,
we are interested in the heat-bath dynamics which equilibrates the value of each ξx at a constant
rate one via corner-flip. If a polymer ξ presents a corner at x, a new polymer ξx is obtained by
flipping the corner at x of ξ provided that ξx ∈ ΩN , which is defined as in (5.8). The generator
of this heat-bath dynamics is defined by (for f ∈ RΩN )

(LNf)(ξ) :=
∑
ξ′∈ΩN

rN (ξ, ξ
′)
[
f(ξ′)− f(ξ)

]
=

2N−1∑
x=1

rN (ξ, ξ
x)
[
f(ξx)− f(ξ)

]
, (5.22)
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where

rN (ξ, ξ
x) :=



exp( 2σ
N

)

1+exp( 2σ
N

)
if ξx−1 = ξx+1 > ξx ≥ 1,

1
1+exp( 2σ

N
)

if ξx > ξx−1 = ξx+1 > 1,

λ
λ+exp( 2σ

N
)

if (ξx−1, ξx, ξx+1) = (1, 2, 1),

exp( 2σ
N

)

λ+exp( 2σ
N

)
if (ξx−1, ξx, ξx+1) = (1, 0, 1),

0 if ξx−1 ̸= ξx+1 or ξx−1 = ξx+1 = 0,

(5.23)

and the other transition rates rN (ξ, ξ′) when ξ′ is not one of the ξxs are equal to zero. We refer
to Figure 2 for a graphical description. The reader can check that the measure µλ,σN satisfies
the detailed balance condition and then it is the unique invariant probability measure for the
heat-bath dynamics. We are interested in how the mixing time tN,λ,σmix grows in terms of N , λ
and σ. Let us introduce first related results that have been previously obtained for comparison.

0

2N

exp( 2σ
N )

1 + exp( 2σ
N )

×

λ

λ + exp( 2σ
N )

1

1 + exp( 2σ
N )

ξexp( 2σ
N )

λ + exp( 2σ
N )

y

x

Figure 2. A graphical representation of the jump rates for the system. A transition of the
chain corresponds to flipping a corner, whose rate is chosen such that the chain is reversible
with respect to µλ,σ

N . The red dashed corner is not available, due to the nonnegative restriction
of the state space ΩN . Note that not all of the possible transitions are shown in the figure.

Related previous results. To study the mixing time, a first step is to understand the equilib-
rium properties of the system, and in particular the asymptotic of the partition function. We
mention now results which have been obtained for special cases of the model:

• When σ = 0, the model considered here is the polymer pinning model whose partition
function and the properties of typical paths are described in (5.6) and below (5.6).
Moreover, it is proved in [CMT08] that the mixing time is at most of order N2 logN .

• Another case is λ = 1 and σ > 0 for the state space without positive constraint, which
corresponds to the height profile of the weakly asymmetric simple exclusion process (or
WASEP) on the line segment J1, 2NK with N particles, i.e.

Ω̃N :=
{
ξ ∈ Z2N+1 : ξ0 = ξ2N = 0 ; ∀x ∈ J1, 2NK, |ξx − ξx−1| = 1

}
, (5.24)

and its corresponding partition function is

Z̃N (σ) := 2−2N
∑
ξ∈Ω̃N

exp
(
σ
NA(ξ)

)
. (5.25)

By [Lab18, Proposition 3 and Lemma 11], we know

Z̃N (σ) = (1 + o(1))CσN
−1/2e2NG(σ), (5.26)

where

G(σ) :=

∫ 1

0
log cosh (σ(1− 2x)) dx. (5.27)

Furthermore, it is shown in [LP16, LL20] that the mixing time is of order N2 logN .
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Our equilibrium results. We identify the free energy when both pinning and area tilt are
present, and identify the right order asymptotic. Before stating the results, we recall that
F (λ) = 1{λ>2} log

λ
2
√
λ−1

.

Proposition 5.3 (Proposition 2.1 in Chapter 3 ). We have for any λ ≥ 0 and σ ≥ 0

lim
N→∞

1

2N
logZN (λ, σ) = F (λ) ∨G(σ). (5.28)

More precisely there exists a constant C1(λ, σ) > 0 such that:
(1) If G(σ) > F (λ), then for all N ≥ 1 we have

1

C1(λ, σ)
≤

√
NZN (λ, σ)

exp (2NG(σ))
≤ C1(λ, σ); (5.29)

(2) If G(σ) ≤ F (λ) and λ > 2, then for all N ≥ 1 we have

1

C1(λ, σ)
≤ ZN (λ, σ)

exp (2NF (λ))
≤ C1(λ, σ). (5.30)

Remark 5.4. The above result shows that the two effect of area tilt and pinning do not
combine and that only the stronger of the two prevails. When F (λ) > G(σ) the pinning effect
dominates, while when F (λ) < G(σ) the effect of area tilt dominates. In the case of a tie between
F (λ) and G(σ), the estimates (5.29)-(5.30) entails that the pinning has a stronger effect. This
is illustrated in Theorem 5.5 below.

We derive the full phase diagram for the free energy f(λ, σ) := limN→∞
1
2N logZN (λ, σ)

in λ and σ of this model, and identify the critical line (see Figure 3) separating the local-
ized/delocalized phases.

(log λ)-axis

σ-axis

0

1

2

3

log 2 4 6 8 10 12 14

f(λ, σ) = F (λ)

f(λ, σ) = G(σ)

f(λ, σ) = 0

F (λ) = G(σ) and λ > 2

λ = 2 and σ ≤ 0

λ ∈ [0, 2] and σ = 0

Figure 3. The statics phase diagram for the free energy f(λ, σ) where the red curve is F (λ) =
G(σ) and λ > 2, the black line is λ = 2 and σ ≤ 0, and the blue line is λ ∈ [0, 2] and σ = 0.

Moreover, during the proof for the partition function, we obtain a detailed description for
the typical behavior of ξ under µλ,σN , and we refer to Figure 4 for a graphical presentation. Let
us define

Mσ(u) :=

∫ u

0
tanh(σ(1− x))dx =

1

σ
log

(
cosh(σ)

cosh(σ(1− u))

)
. (5.31)

Theorem 5.5 (Theorem 2.4 in Chapter 3 ). For λ ≥ 0, σ > 0, we have
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0 2N

C logN

CN

Figure 4. The macroscopic shape of the substrate in equilibrium when F (λ) ≥ G(σ) (at
the top) and F (λ) < G(σ) (at the bottom). The dotted line illustrates the macroscopic shape,
which is the scaling limit when N → ∞ (the dotted line in the top figure coincides with the
x−axis).

1. if G(σ) > F (λ), then for every ε > 0 there exists δ > 0 such that for all N sufficiently
large,

µN

(
sup
u∈[0,2]

∣∣∣∣ 1N ξ⌈uN⌉ −Mσ(u)

∣∣∣∣ > ε

)
≤ e−δN ; (5.32)

2. if G(σ) < F (λ), then for every ε > 0 there exists δ > 0 such that for all N sufficiently
large,

µN

(
sup

x∈J0,2NK
ξx > εN

)
≤ e−δN ; (5.33)

3. if G(σ) = F (λ), then for every ε > 0 and all N sufficiently large,

1

C
√
N

≤ µN

(
sup

x∈J0,2NK
ξx > εN

)
≤ C√

N
, (5.34)

and furthermore there exists δ > 0 such that

µN

(
sup

x∈J0,2NK
ξx > εN and sup

u∈[0,2]

∣∣∣∣ 1N ξ⌈uN⌉ −Mσ(u)

∣∣∣∣ > ε

)
≤ e−δN . (5.35)

Our dynamical results. We are interested in the mixing time TN,λ,σmix (ε). More precisely, we
want to know when (for fixed λ and σ) it behaves asymptotically like a power of N and when it
grows exponentially in N . By Theorem 3.4, the mixing time can be compared to the relaxation
time TNrel(λ, σ) as follows

TNrel(λ, σ) log
1

2ϵ
≤ TN,λ,σmix (ϵ) ≤ TNrel(λ, σ) log

1

εµ∗N
(5.36)

where µ∗N := minξ∈ΩN
µλ,σN (ξ). By Proposition 5.3 about the partition function ZN (λ, σ), it is

immediate to check that in our case logµ∗N is of order N (with a prefactor depending on λ and
σ). Since this factor N is irrelevant for the kind of result we look for, we can focus on the
relaxation time TNrel(λ, σ).

Before stating our dynamical result, we provide a first heuristic for the cases where the
relaxation time grows polynomially/exponentially. Let β ∈ [0, 1] denote the fraction of the
polymer length which is unpinned. By Theorem 5.5, the contribution (to the partition function)
of those polymers which macroscopically have only one unpinned bubble with length 2βN is
e−2NV (β) where

V : β 7→ −βG(βσ)− (1− β)F (λ).
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The idea is that the unpinned fraction should look like a stochastic diffusion on the segment, with
a potential 2NV (·). The relaxation time corresponds to the time required for such a diffusion to
overcome the energy barrier between the two local mimina of V (β) (at 0 and 1 see Figure 5).

V (β)

β1
0

(A)

V (β)

β
0

1

(B)

E

V (β)

β
0

E 1

(C)

Figure 5. The shape of V in three cases.

(A) If G(σ) + σG′(σ) ≤ F (λ), then the unpinned region can shrink down without barrier
and the system should mix in polynomial time.

(B) If G(σ) ≤ F (λ) < G(σ) + σG′(σ), then the system starting from the fully unpinned
state needs to overcome the energy barrier to reach the fully pinned equilibrium state,
which takes an exponential time.

(C) If F (λ) < G(σ), then the system starting from the fully pinned state needs to over-
come the energy barrier to reach the fully unpinned equilibrium state, which takes an
exponential time.

The size of the effective potential barrier to be overcome in case (B) and (C) is equal to

E(λ, σ) := F (λ) ∧G(σ)− [(1− β∗)F (λ) + β∗G(β∗σ)]

with β∗ such that V (β∗) = maxβ∈[0,1] V (β).

Theorem 5.6 (Theorem 2.7 in Chapter 3). For all λ > 2 and all σ > 0, we have

lim
N→∞

1

2N
log TNrel(λ, σ) = E(λ, σ). (5.37)

When E(λ, σ) = 0, there exist constants C(λ, σ) > 0 and C(λ) > 0 such that for all N ≥ 1,

C(λ, σ)−1N ≤ TNrel(λ, σ) ≤ C(λ, σ)NC(λ). (5.38)

When E(λ, σ) > 0, there exists constants C(λ, σ) > 0 and C ′(λ, σ) > 0 such that

C ′(λ, σ)−1N−2 ≤ TNrel(λ, σ)e
−2NE(λ,σ) ≤ C ′(λ, σ)NC(λ,σ).

When E(λ, σ) > 0, the state space display two distinct wells of potential, for which we refer
to Figure 6 for a graphical description. In this case, let HN denote the domain of attraction of
the unstable local equilibrium of the dynamics

HN :=

{
{ξ ∈ ΩN : Lmax(ξ) > β∗N} , if G(σ) ≤ F (λ) < G(σ) + σG′(σ),

{ξ ∈ ΩN : Lmax(ξ) ≤ β∗N} if F (λ) < G(σ),
(5.39)

where
Lmax(ξ) := max{y − x : ξ2x = 0, ξ2y = 0, ∀z ∈ Jx, yK, ξ2z > 0}.

When E(λ, σ) > 0 and the dynamics starts from a configuration ξ ∈ HN , the system should
quickly thermalize in HN (within a time which is polynomial in N) and then takes a time of order
exp(2NE(λ, σ)) to jump from HN to ΩN \ HN and reaches equilibrium in another polynomial
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(log λ)-axis

σ-axis

0

1

2

3

log 2 2 4 6 8 10 12 14

F (λ) = G(σ)

E(λ, σ) = 0

The rapidly mixing phase
( localized and single well)

f(λ, σ) = F (λ)

The slow mixing phase
(localized and double wells)

f(λ, σ) = F (λ)

The slow mixing phase
(delocalized and double wells)

f(λ, σ) = G(σ)

Figure 6. The dynamical phase diagram in the regime λ > 2 and σ > 0: The line F (λ) = G(σ)
separates the localized phase from the delocalized phase, while the line E(λ, σ) = 0 separates
the rapidly mixing phase from the slow mixing phase.

time in terms of N . Moreover, the properly rescaled time for jumping from HN to ΩN \ HN

should converge to an exponential random variable which is the following theorem.

Theorem 5.7 (Theorem 2.8 in Chapter 3). When E(λ, σ) > 0, we have

lim
N→∞

PµN (·|HN )

(
ηtTN

rel(λ,σ)
∈ HN

)
= exp(−t)

where PµN (·|HN ) denotes the law of the Markov chain (ηt)t≥0 starting with η0 distributed as
µN (·|HN ).

Let us conclude the presentation by giving a short insight about the ideas in Chapter 3.
Idea for the proof about statics. Since the proof for Theorem 5.5 is a refinement of that for

Proposition 5.3, we are mainly concerned with the idea for Proposition 5.3. We decompose the
paths into excursions away from the x-axis by factorizing, and apply the renewal approach to
show that

(A) When F (λ) ≥ G(σ), the main contribution to the partition function ZN (λ, σ) comes
from those paths with Lmax(ξ) ≤ C logN and typical height at constant order. There-
fore, we have ZN (λ, σ) ≍ ZN (λ, 0).

(B) When F (λ) < G(σ), the main contribution to the partition function ZN (λ, σ) comes
from those paths with Lmax(ξ) ≥ (1 − ε)N and typical height of order N . Therefore,
we have ZN (λ, σ) ≍ Z̃N (σ).

Idea for the proof about dynamics. To obtain the exponential lower bound on the mixing time
we use bottleneck techniques (see [LP17, Chapter 7.2]). The analysis of the equilibrium system
allows to identify that the worst bottleneck should be between HN and H∁

N and the problem
reduces to a (technical) estimate of the corresponding bottleneck ratio.

To get the corresponding upper-bound, or a polynomial upper-bound when E(λ, σ) = 0, a
significant obstacle is the large dimension of the system. We rely on [JSTV04, Theorem 1] which,
very roughly speaking, is an inequality which allows to compare the mixing time of a Markov
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chain to that of a reduced version, which lives on a smaller and simplified state space. Successive
use of this result (each of them involves heavy computation) allows to reduce the study of the
chain to that of the evolution of only the largest excursions of the chain ηξt away from the x−axis.

5.3. Chapter 4: Mixing time of the asymmetric simple exclusion process in a
random environment.

Model. The simple exclusion process is a reasonable toy model to describe the relaxation of
a low density gas, for which we refer to [Lig12, Chapter VIII.6] for a historical introduction. Due
to the impurity of the environment, we are interested in the case where the jump rates of the
particles are spatially inhomogeneous. Given a sequence ω = (ωx)x∈J1,NK taking values in (0, 1),
the exclusion process with k particles in the segment J1, NK with environment ω is a Markov
process which can be informally described as follow: (see Figure 7 for a graphical description)

(A) Each site is occupied by at most one particle (we refer to this constraint as the exclusion
rule). Therefore at all time there are k occupied sites and N − k empty sites.

(B) Each of the k particles perform a random walk such that a particle at site x ∈ J1, NK
jumps to site x− 1 (if x ≥ 2) at rate 1− ωx and to site x+ 1 (if x ≤ N − 1) at rate ωx
if the target site is not occupied.

1 N0 N + 1

× ω1

x

1 − ωx × 1 − ωN ×

y

ωy1 − ωy ×1 − ωz

z

Figure 7. A graphical representation of the simple exclusion process in environment
(ωx)1≤x≤N : a bold circle represents a particle, and the number above every arrow represents
the jump rate while a red ”× ” represents an inadmissible jump.

We denote its state space by

ΩN,k :=

{
ξ ∈ {0, 1}N :

N∑
x=1

ξ(x) = k

}
, (5.40)

where the 1s’ are denoting particles while 0s’ correspond to empty sites. To describe transition
rates, let ξx,y denote the configuration obtained by swapping the values of ξ at sites x and y of
the configuration ξ, and transition rates are given by

rω(ξ, ξx,x+1) :=

{
ωx if ξ(x) = 1 and ξ(x+ 1) = 0,

1− ωx+1 if ξ(x+ 1) = 1 and ξ(x) = 0,
for x ∈ J1, N − 1K

rω(ξ, ξ′) := 0 in all other cases.

(5.41)

The simple exclusion process with k particles in the segment J1, NK and environment ω is the
Markov process whose generator is defined by (for f : ΩN,k → R)

LωN,k(f)(ξ) :=
N−1∑
x=1

rω(ξ, ξx,x+1)
[
f(ξx,x+1)− f(ξ)

]
. (5.42)

The chain is ergodic and reversible. In order to give a nice expression for the equilibrium measure,
let us introduce the random potential V ω : N → R defined as follows, V ω(1) := 0 and for x ≥ 2

V ω(x) :=

x∑
y=2

log

(
1− ωy
ωy−1

)
. (5.43)
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With a small abuse of notation, we extend V ω to a function of ΩN,k by summing the value of
V ω among the positions of the particles in the configuration ξ:

V ω(ξ) :=

N∑
x=1

V ω(x)ξ(x). (5.44)

We consider the probability measure πωN,k defined by

πωN,k(ξ) :=
1

ZωN,k
e−V

ω(ξ) with ZωN,k =
∑

ξ∈ΩN,k

e−V
ω(ξ). (5.45)

We can check by inspection that πωN,k satisfies the detailed balance condition for LωN,k, and thus
that it is the unique invariant probability measure on ΩN,k.

We are interested in the case where the environment ω = (ωx)1≤x≤N is independently sampled
from a common law denoted by P (and its expectation denoted by E), and set ρi := (1−ωi)/ωi.
Due to the symmetry between particles and empty sites, between left and right to which direction
particles tend to move, we assume that

1 ≤ k ≤ N/2 and E [log ρ1] < 0, (5.46)

so that by [Sol75] we know that particles have a tendency to move to right. Moreover, due to
some technical issue we assume that there exists α ∈ (0, 1/2) such that

P (ω1 ∈ [α, 1− α]) = 1, (5.47)

which is referred to as the uniform ellipticity condition. Let tN,k,ωmix be the mixing time for the
process in a fixed realization of ω, and we are interested in how the function tN,k,ωmix grows in
terms of N and k for typical realization of ω.

Let us introduce first the results that have been previously obtained for comparison.
Related previous results about random walk in a random environment. Given ω = (ωx)x∈Z,

a random walk (of only one particle) on Z in the environment ω is first studied in [Sol75]. Let
(Xt)t≥0 be a continuous-time random walk starting at 0 with jump rates given by

qω(x, x+ 1) = ωx,

qω(x, x− 1) = 1− ωx,

qω(x, y) = 0 if |x− y| ≠ 1,

(5.48)

and we let Qω denote the corresponding law. Solomon in [Sol75] showed that
E[log ρ1] = 0 ⇒ Xt is recurrent under Qω , P-a.s.,
E[log ρ1] < 0 ⇒ limt→∞Xt = ∞ under Qω , P-a.s.,
E[log ρ1] > 0 ⇒ limt→∞Xt = −∞ under Qω , P-a.s.

(5.49)

From above, if E[log ρ1] ̸= 0, the random walk (Xt)t≥0 is transient. Moreover, the rate at which
Xt goes to infinity has also been identified in [KKS75]. It can be expressed in terms of a simple
parameter of the distribution ω, yielding in particular a necessary and sufficient condition for
balisticity. Let us assume that E[log ρ1] < 0, and set

λ = λP := inf{s > 0,E[ρs1] ≥ 1} ∈ (0,∞].

It has been proved in [KKS75] that if λ > 1 then there exists ϑP > 0 such that

lim
t→∞

Xt

t
= ϑ (5.50)
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and that if λ ∈ (0, 1] then

lim
t→∞

log(Xt)

log t
= λ. (5.51)

Related previous results about tN,k,ωmix when ω ≡ p. The mixing time of the exclusion process
on the line segment has been extensively studied in the case where the sequence ω is constant,
i.e. ω ≡ p. In that case, not only the right order of magnitude has been identified for the mixing
time, but also the sharp asymptotic equivalent.

• When p = 1/2, this is the symmetric simple exclusion process. It was shown in [Ald83a]
that the mixing time for the exclusion on the segment is of order at least N2 and at
most N2(logN)2. It was later established (see [Wil04] for the lower bound and [Lac16b]
for the upper bound) that if kN satisfies lim infN→∞KN = ∞, we have

tN,kNmix (ε) = [1 + o(1)]
1

π2
N2 log kN . (5.52)

• When p ̸= 1/2, this is the asymmetric simple exclusion process. It was shown in
[BBHM05] that the mixing time is of order N . This result was refined in [LL19] by
identifying the proportionality constant, showing that if kN satisfies limN→∞ kN/N =
θ ∈ (0, 1), then

tN,kNmix (ε) = [1 + o(1)]
(
√
θ +

√
1− θ)2

|2p− 1|
N. (5.53)

• when p = 1
2±εN with limN→∞ εN = 0, the mixing time was investigated in [LP16, LL20]

where its order of magnitude and its sharp asymptotic were respectively determined.
Related previous results about tN,1,ωmix . The mixing time for a random walk in the segment

with a transient random environment (i.e. k = 1 in the setting) was investigated in [GK13]. It
is shown that whenever λP > 1 then

tN,1,ωmix (ε) = [1 + o(1)]NE [Qω [Tω1 ]] , (5.54)

where Tω1 is the first hitting time of 1 for the random walk in a random environment ω starting
from 0 (the result in [GK13] is slightly more precise and the assumption is more general than
(5.47)). When λP < 1, it is shown that the mixing time is of a much larger magnitude but that
cutoff does not hold. More precisely, for λP ≤ 1 we have

lim
N→∞

log tN,1,ωmix (ε)

logN
=

1

λP
. (5.55)

The asymptotic N1/λP+o(1) corresponds to the time that is required to overcome the largest
potential barrier present in the system, whose height is of order (1/λ) logN .

Related previous results about tN,k,ωmix in ballistic environment. In [Sch19], the mixing time
tN,kN ,ωmix were investigated under the assumption that limN→∞ kN/N = θ ∈ (0, 1/2] and λP > 1.
Three different cases are considered.

• When ess inf ω1 > 1/2, it is shown that the mixing tN,kN ,ωmix is of order N , by a simple
comparison with the case of homogeneous asymmetric environment.

• When ess inf ω1 < 1/2, it is shown that there exists a positive δ such that the mixing
time satisfies tN,kN ,ωmix ≥ N1+δ.

• When ess inf ω1 = 1/2, it is shown that

lim inf
N→∞

tN,kN ,ωmix (ε)/N = ∞ and tN,kN ,ωmix (ε) ≤ CN(logN)3, (5.56)

together with a quantitative lower bound if P[ω1 = 1/2] > 0.
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Our results. The main object of Chapter 4 is the study of the mixing time for the exclusion
process in an i.i.d. environment.

Theorem 5.8. Under the assumptions (5.47)-(5.46) and assuming further that λP < ∞,
there exists a positive constant c(α,P) such that with high probability we have for every N and
k ∈ J1, N/2K

tN,k,ωmix ≥ cmax
{
N,N

1
λ (logN)−

2
λ , kN

1
2λ (logN)−2(1+ 1

λ
)
}
. (5.57)

In order to describe our explicit upper bound, we need to introduce the function F which is
the log-Laplace transform of log ρ1 that is

F (u) := logE [ρu1 ] . (5.58)

Moreover, F is strictly convex and satisfies F (0) = F (λ) = 0. We let u0 be defined by

F (u0) = min
u∈R

F (u) < 0.

Theorem 5.9. Under the assumptions (5.46) and (5.47), then with high probability we have

tN,k,ωmix ≤ 80kNα−1

(
3u0 + 2

|F (u0)|
logN

)4

N
3u0+2
|F (u0)|

(2 log 1−α
α

+4 log 4−3 log 3). (5.59)

Let us conclude the presentation by providing a first heuristic in Chapter 4.
Idea for the lower bound on the mixing time. For typical environment ω, under the equi-

librium measure πωN,k the distance between the rightmost empty site and the leftmost particle
is at constant order. Then we consider the time for the dynamics (σmin

t )t≥0 starting with the
configuration ξmin := 1{1≤x≤k} to reach equilibrium. Each of the three terms in Theorem 5.8
corresponds to a different mechanism listed as follow:

• Mass transport cannot be faster than ballistic: The speed of the rightmost particle is at
most linear. Indeed, particles cannot move faster than balistically for all realization of
ω, so that the time required to transport the mass of particles to equilibrium has to be
at least of order N . This idea is already present in [BBHM05].

• The leftmost particle may be blocked by traps in the potential profile: As soon as
ess inf ω1 < 1/2, the potential profile V is non-monotone and will create energy barriers.
It is known that max1≤x<y≤N V (y)− V (x) ∼ (1/λ) logN , and we consider the time for
the leftmost particle to cross the deepest trap in the segment J1, N/4K by comparing
with the random walk. It takes time roughly N1/λ.

• Potential barrier may also create bottleneck for the flow of particles: When the particles
flow through the deepest trap, the particle are “filling” half of the potential well, so
that the remaining potential barrier to be crossed is halved. Therefore, the time for a
particle to flow out of the trap is roughly N1/(2λ).

Idea for the upper bound on the mixing time. We provide a canonical coupling which keeps
the monotonicity, and study the hitting time

τ := inf
{
t ≥ 0 : σmin

t = ξmax

}
(5.60)

where ξmax := 1{N−k+1≤x≤N} and (σmin
t )t≥0 is the dynamics starting from ξmin. We turn to

study the hitting time τ , and by Markov property

P [τ > nt] ≤ P [τ > t]n ≤
(
1−P

[
σmin
t = ξmax

])n
. (5.61)

To give a lower bound on P
[
σmin
t = ξmax

]
, we apply the Peres-Winkler inequality [PW13, The-

orem 1.1] to guide the particles to the right, for which we use flow method to show that the
spectral gap satisfies gapωN,k ≥ exp(−C(α)N) for all realization of ω.





CHAPTER 2

Cutoff for polymer pinning dynamics in the repulsive phase

Abstract: In this chapter, we consider the Glauber dynamics for model of polymer inter-
acting with a substrate or wall. The state space is the set of one-dimensional nearest-neighbor
paths on Z with nonnegative integer coordinates, starting at 0 and coming back to 0 after L
(L ∈ 2N) steps and the Gibbs weight of a path ξ = (ξx)

L
x=0 is given by λN (ξ), where λ ≥ 0 is a

parameter which models the intensity of the interaction with the substrate and N (ξ) is the num-
ber of zeros in ξ. The dynamics proceeds by updating ξx with rate one for each x = 1, . . . , L−1,
in a heat-bath fashion. This model was introduced in [CMT08] with the aim of studying the
relaxation to equilibrium of the system.
We present new results concerning the total variation mixing time for this dynamics when λ < 2,
which corresponds to the phase where the effects of the wall’s entropic repulsion dominates. For
λ ∈ [0, 1], we prove that the total variation distance to equilibrium drops abruptly from 1 to 0
at time (L2 logL)(1 + o(1))/π2. For λ ∈ (1, 2), we prove that the system also exhibits cutoff at
time (L2 logL)(1 + o(1))/π2 when considering mixing time from “extremal conditions” (that is,
either the highest or lowest initial path for the natural order on the set of paths). Our results
improve both previously proved upper and lower bounds in [CMT08].

1. Introduction

1.1. The random walk pinning model. Consider the set of all one-dimensional nearest-
neighbor paths on Z with nonnegative integer coordinates, starting at 0 and coming back to 0
after L steps, i.e.

ΩL :=
{
ξ ∈ ZL+1 : ξ0 = ξL = 0; |ξx+1 − ξx| = 1, ∀x ∈ J0, L− 1K; ξx ≥ 0,∀x ∈ J0, LK

}
,

where L ∈ 2N, and Ja, bK := Z ∩ [a, b] for all a, b ∈ R with a < b. We study the polymer pinning
model. This model is obtained by assigning to each path ξ ∈ ΩL a weight λN (ξ), in which λ ≥ 0
is the pinning parameter and

N (ξ) :=

L−1∑
x=1

1{ξx=0} (1.1)

is the number of contact points with the x-axis. By convention, 00 := 1 and 0n := 0 for any
positive integer n ≥ 1. Normalizing the weights, we obtain a Gibbs probability measure µλL on
ΩL, defined by

µλL(ξ) :=
λN (ξ)

ZL(λ)
(1.2)

where ξ ∈ ΩL and
ZL(λ) :=

∑
ξ′∈ΩL

λN (ξ′). (1.3)

The graph of ξ represents the spatial conformation of the polymer and λ models the energetic
interaction with an impenetrable substrate which fills the lower half plane (λ < 1 corresponding
to a repulsive interaction, λ > 1 to an attractive one). Since ξx ≥ 0 for any ξ ∈ ΩL and any

41
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x ∈ J0, LK, we say that the polymers interact with an impenetrable substrate. When there is no
confusion, we drop the indices λ and L in µλL.

The random walk pinning model was introduced in the seminal paper [Fis84] several decades
ago, and its various derivative models have been studied since. We refer to [Gia07, Gia11] for
recent reviews, and mention [Gia07, Chapter 2] and references therein for more details. This
model displays a transition from a delocalized phase to a localized phase (see [CMT08, Section
1]): (a) if 0 ≤ λ < 2, the expected number of contacts µλL(N (ξ)) is uniformly bounded in L and
the height of the middle point ξL/2 is typically of order

√
L; (b) if λ > 2, the amount of contacts

with the x−axis of typical paths is of order L and the distribution of the height of the middle
point ξL/2 is (exponentially) tight in L. These two phases are referred to as the delocalized
and localized phase respectively, at the critical point λ = 2 the system displays an intermediate
behavior.

A dynamical version of this model was introduced more recently by Caputo et al. in [CMT08].
The corner-flip Glauber dynamics is a continuous-time reversible Markov chain on ΩL with µλL
as the unique invariant probability measure, whose transitions are given by the updates of local
coordinates. We refer to Figure 1 for a graphical description of the jump rates for the system.
The dynamics is studied to understand how the system relaxes to equilibrium. Caputo et al. in
[CMT08, Theorems 3.1 and 3.2] proved that for λ ∈ [0, 2), the mixing time of the dynamics in
ΩL is of order L2 logL, with non-matching constant prefactors for the upper and lower bounds.

The goal of this chapter is to improve both the upper and lower bounds proved in [CMT08]
and to show that the mixing time of the system is exactly (1 + o(1))(L2 logL)/π2 for λ ∈ [0, 2).
We prove the result for the worst initial condition mixing time when λ ∈ [0, 1]. When λ ∈ (1, 2),
our result is valid only for the mixing time starting from either the lowest or highest initial
condition but we believe that this is only a technical restriction.

1.2. The dynamics. For ξ ∈ ΩL and x ∈ J1, L− 1K, we define ξx ∈ ΩL by

ξxy :=


ξy if y ̸= x,

(ξx−1 + ξx+1)− ξx if y = x and ξx−1 = ξx+1 ≥ 1 or ξx−1 ̸= ξx+1,

ξx if y = x and ξx−1 = ξx+1 = 0.

(1.4)

When ξx−1 = ξx+1, ξ displays a local extremum at x and we obtain ξx by flipping the corner
of ξ at the coordinate x, provided that the path obtained by flipping the corner is in ΩL (this
excludes corner-flipping when ξx−1 = ξx+1 = 0.). See Figure 1 for a graphical representation.
Given the probability measure µλL defined in (1.2), we construct a continuous-time Markov chain
whose generator L is given by its action on the functions RΩL . It can be written explicitly as

(Lf)(ξ) :=
L−1∑
x=1

Rx(ξ)
[
f(ξx)− f(ξ)

]
, (1.5)

where f : ΩL → R is a function, and

Rx(ξ) :=


1
2 if ξx−1 = ξx+1 > 1,
λ

1+λ if (ξx−1, ξx, ξx+1) = (1, 2, 1),
1

1+λ if (ξx−1, ξx, ξx+1) = (1, 0, 1),

0 if ξx−1 ̸= ξx+1 or ξx−1 = ξx+1 = 0.
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Figure 1. A graphical representation of the jump rates for the system pinned at (0, 0) and
(L, 0). A transition of the dynamics corresponds to flipping a corner, whose rate depends on
how it changes the number of contact points with the x-axis. The rates are chosen in a manner
such that the dynamics is reversible with respect to µλ

L. The two red dashed corners are not
available and labeled with ×, because of the nonnegative restriction of the state space ΩL. Note
that not all the possible transitions are shown in the figure.

Equivalently, we can rewrite the generator as

(Lf)(ξ) =
L−1∑
x=1

[
Qx(f)(ξ)− f(ξ)

]
, (1.6)

and
Qx(f)(ξ) := µλL

(
f
∣∣(ξy)y ̸=x).

Let (σξ,λt )t≥0 be the trajectory of the Markov chain with initial condition σξ,λ0 = ξ and param-
eter λ, and let P ξ,λt be the law of distribution of the time marginal σξ,λt . Since µλL(ξ)Rx(ξ) =

µλL(ξ
x)Rx(ξ

x), the continuous-time chain is reversible with respect to the probability measure µλL.
This chain is called the Glauber dynamics. Because the Markov chain is irreducible, by [Nor98,
Theorem 3.5.2] we know that for all ξ ∈ ΩL, P ξ,λt converges to µλL in the discrete topology as t
tends to infinity. We ask a quantitative question: how long does it take for P ξ,λt to converge to
µλL, especially for the worst initial starting path ξ ∈ ΩL?

Let us state the aforementioned question in a mathematical framework. If α and β are two
probability measures on the space (ΩL, 2

ΩL), the total variation distance between α and β is

∥α− β∥TV :=
1

2

∑
ξ∈ΩL

|α(ξ)− β(ξ)| = sup
A⊂ΩL

(α (A)− β (A)) . (1.7)

We define the distance to equilibrium at time t by

dL,λ(t) := max
ξ∈ΩL

∥P ξ,λt − µλL∥TV. (1.8)

For any given ϵ ∈ (0, 1), let the ϵ-mixing-time be

TL,λmix(ϵ) := inf
{
t ≥ 0 : dL,λ(t) ≤ ϵ

}
. (1.9)

We say that this sequence of Markov chains has a cutoff, if for all ϵ ∈ (0, 1),

lim
L→∞

TL,λmix(ϵ)

TL,λmix(1− ϵ)
= 1. (1.10)

The cutoff phenomenon is surveyed in the seminal paper [Dia96], and we refer to [LP17, Chapter
18] for more information. In [CMT08, Theorems 3.1 and 3.2], for all λ ∈ [0, 2), Caputo et al.
proved that for all δ > 0 and all ϵ ∈ (0, 1), if L is sufficiently large, we have

1− δ

2π2
L2 logL ≤ TL,λmix(ϵ) ≤

6 + δ

π2
L2 logL. (1.11)
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Moreover, the spectral gap, denoted by gapL,λ, is the minimal positive eigenvalue of −L and the
relaxation time TL,λrel is its inverse. That is

TL,λrel := sup
f : VarL(f)>0

− VarL(f)

µλL(fLf)
= gap−1

L,λ, (1.12)

where VarL(f) := µλL(f
2)− µλL(f)

2 with µλL(f) :=
∑

ξ∈ΩL
µλL(ξ)f(ξ). There is no explicit eigen-

function of the generator L due to the effect of the impenetrable wall (i.e. the x−axis), but
Caputo et al. adapted the idea in [Wil04, Lemma 1] to find a function (defined in (3.2) below)
which is almost an eigenfunction. In [CMT08, Theorems 3.1 and 3.2], they showed that for all
λ ∈ [0, 2), there exists a universal constant C > 0 independent of L and λ, such that

C−1L2 ≤ TL,λrel ≤ CL2, (1.13)

which together with (1.11) implies TL,λrel ≪ TL,λmix(
1
4) and then strongly indicates that Equation

(1.10) should hold. Note that the condition TL,λrel ≪ TL,λmix(
1
4) is not sufficient to imply the cutoff

phenomenon, and we refer to [LP17, Notes in Chapter 18] for an example.

1.3. Main results. We find that the mixing time is π−2
(
1+o(1)

)
(L2 logL) for all λ ∈ [0, 1],

improving both the lower and upper bounds in [CMT08]. That is the following theorem.

Theorem 1.1. For all ϵ ∈ (0, 1) and all λ ∈ [0, 1], we have

lim
L→∞

π2TL,λmix(ϵ)

L2 logL
= 1. (1.14)

Therefore, there is a cutoff phenomenon in the Glauber dynamics for λ ∈ [0, 1]. The reason
why we include the result for λ = 0 is the need for the mixing time about the dynamics when
λ ∈ (1, 2).

Remark 1.2. Theorem 1.1 about λ = 0 is the same as the case λ = 1 by the following
identification. Let

Ω+
L :=

{
ξ ∈ ΩL : N (ξ) = 0

}
(1.15)

where N (ξ) is defined in (1.1), and identify Ω+
L with ΩL−2 by lifting the x-axis up by distance

one in ΩL. Precisely, the identification is as follows: ξ = (ξx)0≤x≤L ∈ Ω+
L is identified with

ς = (ςx)0≤x≤L−2 ∈ ΩL−2, if ςx = ξx+1 − 1 for all x ∈ J0, L− 2K. We can see:
(a) µ0L is the same as the probability measure µ1L−2;
(b) the dynamics (σξ,0t )t≥0—living in the space Ω+

L—is the same as the dynamics (σς,1t )t≥0

living in the space ΩL−2, where ξ ∈ Ω+
L is identified with ς ∈ ΩL−2.

Therefore, we only need to prove Theorem 1.1 for λ ∈ (0, 1]. In addition, we have a partial
result for λ ∈ (1, 2). Let us state the framework. We introduce a natural partial order “ ≤ ” on
ΩL as follows (

ξ ≤ ξ′
)
⇔
(
∀x ∈ J0, LK, ξx ≤ ξ′x

)
. (1.16)

In other words, if ξ ≤ ξ′, the path ξ lies below the path ξ′. Then the maximal path ∧ and the
minimal path ∨ are respectively given by

∧x : = min
(
x,−x+ L

)
, ∀x ∈ J0, LK; (1.17)

∨x : = x− 2⌊x/2⌋, ∀x ∈ J0, LK. (1.18)
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where ⌊x/2⌋ := sup
{
n ∈ Z : n ≤ x/2

}
. Define

TL,∧mix (ϵ) := inf
{
t ≥ 0 : ∥P∧,λ

t − µλL∥TV ≤ ϵ
}
,

TL,∨mix (ϵ) := inf
{
t ≥ 0 : ∥P∨,λ

t − µλL∥TV ≤ ϵ
}
,

and

T̆Lmix(ϵ) := max
(
TL,∧mix , T

L,∨
mix

)
. (1.19)

For λ ∈ (1, 2), applying Peres-Winkler censoring inequality in [PW13, Theorem 1.1], we discover
that the mixing time is also (1 + o(1))(L2 logL)/π2 for the dynamics starting with the two
extremal paths. That is the following theorem.

Theorem 1.3. For all ϵ ∈ (0, 1) and λ ∈ (1, 2), we have

lim
L→∞

π2T̆Lmix(ϵ)

L2 logL
= 1. (1.20)

1.4. Other values of λ. Our analysis excludes the case λ > 2, let us just mention that
the convergence to equilibrium follows a different pattern in this case. While the relaxation time
and the mixing time are of order L2 and L2 logL respectively in the repulsive phase λ < 2, it is
believed that they become of order L and L2 respectively in the attractive phase λ > 2. Rigorous
lower bound has been proved in [CMT08, Theorem 3.2], but matching order upper bound has
only been shown when λ = ∞ ([CMT08, Proposition 5.6] for the mixing time). Furthermore in
[Lac14, Theorem 2.7], it is shown that in this last case the mixing time is equal to L2/4(1+o(1)).
When λ ∈ (2,∞), the conjecture in [Lac14, Section 2.7] seems to indicate that the mixing time
should be of order C(λ)L2(1 + o(1)) for some explicit C(λ).

At the critical value λ = 2, we believe that the mixing time continues to be L2

π2 (logL)(1+o(1))
but our techniques do not allow to treat this case.

1.5. Organization of the chapter. Section 2 introduces a grand coupling for the dynamics
corresponding to different ξ and λ, and some useful reclaimed results.

Section 3 is dedicated to the lower bound on the mixing time for λ ∈ (0, 2).
Section 4 supplies the upper bound on the mixing time for λ ∈ (0, 1].
Section 5 is about the upper bound on the mixing time for the dynamics starting with the

two extremal paths when λ ∈ (1, 2), applying censoring inequality.

1.6. Notation. We use “ := ” to define a new quantity on the left-hand side, and use “ =: ”
in some cases when the quantity is defined on the right-hand side.

We let (Cn(λ))n∈N and (cn(λ))n∈N be some positive constants, which are only dependent on
λ. Additionally, we let (cn)n∈N and (Cn)n∈N be some positive and universal constants.

2. Technical preliminaries

To use the monotonicity of the Glauber dynamics, we provide a graphical construction of
the Markov chain such that all dynamics, i.e.

{
(σξ,λt )t≥0 : ∀ξ ∈ ΩL, ∀λ ∈ [0,∞)

}
, live in one

common probability space. This construction appears in [Lac16b, Section 8.1], which provides
more independent flippable corners than the coupling in [CMT08, Subsection 2.2.1].
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2.1. A graphical construction. We set the exponential clocks and independent “coins"
in the centers of the squares formed by all the possible corners and their counterparts. Let

Θ :=
{
(x, z) : x ∈ J2, L− 2K, z ∈ J1, L/2− 1− |x− L/2|K;x+ z ∈ 2N+ 1

}
, (2.1)

and let T ↑ and T ↓ be two independent rate-one exponential clock processes indexed by Θ. That
is to say, for every (x, z) ∈ Θ and n ≥ 0, we have T ↑

(x,z)(0) = 0, and(
T ↑
(x,z)(n)− T ↑

(x,z)(n− 1)
)
n≥1

is a field of i.i.d. exponential random variables with mean 1. Similarly, this holds for T ↓
(x,z).

Moreover, let U↑ =
(
U↑
(x,z)(n)

)
(x,z)∈Θ,n≥1

and U↓ =
(
U↓
(x,z)(n)

)
(x,z)∈Θ,n≥1

be two independent

fields of i.i.d. random variables uniformly distributed in [0, 1], which are independent of T ↑ and
T ↓. Given T ↑, T ↓, U↑ and U↓, we construct, in a deterministic way, (σξ,λt )t≥0 the trajectory of
the Markov chain with parameter λ and starting with ξ ∈ ΩL, i.e. σξ,λ0 = ξ.

When the clock process T ↑
(x,z) rings at time t = T ↑

(x,z)(n) for n ≥ 1 and σξ,λ
t− (x) = z − 1, we

update σξ,λ
t− as follows:

• if σξ,λ
t− (x − 1) = σξ,λ

t− (x + 1) = z ≥ 2 and U(x,z)(n)
↑ ≤ 1

2 , let σξ,λt (x) = z + 1 and the
other coordinates remain unchanged;

• if σξ,λ
t− (x− 1) = σξ,λ

t− (x+ 1) = z = 1 and U↑
(x,z)(n) ≤

1
1+λ , let σξ,λt (x) = 2 and the other

coordinates remain unchanged.
If neither of these two aforementioned conditions is satisfied, we do nothing.

When the clock process T ↓
(x,z) rings at time t = T ↓

(x,z)(n) for n ≥ 1 and σξ,λ
t− (x) = z + 1, we

update σξ,λ
t− as follows:

• if σξ,λ
t− (x− 1) = σξ,λ

t− (x+1) = z ≥ 2 and U↓
(x,z)(n) ≤

1
2 , let σξ,λt (x) = z− 1 and the other

coordinates remain unchanged;
• if σξ,λ

t− (x − 1) = σξ,λ
t− (x + 1) = z − 1 = 0 and U↓

(x,z)(n) ≤
λ

1+λ , let σξ,λt (x) = 0 and the
other coordinates remain unchanged.

If neither of these two aforementioned conditions is satisfied, we do nothing.
Let P or E stand for the probability law corresponding to T ↑, T ↓, U↑ and U↓. Recall that µλL

is the stationary probability measure for the dynamics. The dynamics (σµ,λt )t≥0 is constructed by
first taking the initial path ξ sampling from µ at t = 0 and then using the graphical construction
with parameter λ for t > 0. This sampling is independent of P. Define Pµ,λt (·) := P(σµ,λt = ·),
and likewise Pµ,λt (A) := P[σµ,λt ∈ A] for A ⊂ ΩL. When it is clear in the context, we use the
notations (σµt )t≥0 and Pµt , ignoring the parameter λ.

This graphical construction allows us to construct all the trajectories (σξ,λt )t≥0 starting from
all ξ ∈ ΩL and all parameters λ ∈ [0,∞) simultaneously. It preserves the order, affirmed in the
following proposition. The proof of this proposition, which we omit, is almost identical to that
of [Lac16b, Proposition 3.1].

Proposition 2.1. Let ξ and ξ′ be two elements of ΩL satisfying ξ ≤ ξ′, and 0 ≤ λ ≤ λ′.
With the graphical construction above, we have

P
[
∀t ∈ [0,∞) : σξ,λt ≤ σξ

′,λ
t

]
= 1,

P
[
∀t ∈ [0,∞) : σξ,λ

′

t ≤ σξ,λt

]
= 1.

(2.2)
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2.2. Useful reclaimed results. We have the asymptotic information about ZL(λ), which
is:

Theorem 2.2 (Theorem 2.1 in [CMT08]). For every λ ∈ [0, 2), we have

lim
L→∞

ZL(λ)

2LL−3/2
= C(λ), (2.3)

where C(λ) > 0 is a constant, only dependent on λ.

Furthermore, to understand the Glauber dynamics, it is important to understand how the
generator L acts on the paths in ΩL. Let us introduce the settings. For a function g : J0, LK → R,
the discrete Laplace operator ∆ is defined as follows: for any x ∈ J1, L− 1K,

(∆g)x :=
1

2

(
g(x− 1) + g(x+ 1)

)
− g(x).

Besides, we define a function f : ΩL 7→ R to be f(ξ) := ξx, and let Lξx := (Lf)(ξ) for x ∈
J1, L − 1K. Considering (1.6), we know that Lξx = µλL(ξx|ξx−1, ξx+1) − ξx, and a calculation
yields the following identity which we recall as a lemma.

Lemma 2.3 (Lemma 2.3 in [CMT08]). For every λ > 0 and every x ∈ J1, L− 1K, we have

Lξx = (∆ξ)x + 1{ξx−1=ξx+1=0} −
(
λ− 1

λ+ 1

)
1{ξx−1=ξx+1=1}. (2.4)

3. Lower bound on the mixing time for λ ∈ (0, 2)

This section is devoted to provide a lower bound on the mixing time of the Glauber dynamics
for λ ∈ (0, 2), which is the following proposition.

Proposition 3.1. For all λ ∈ (0, 2) and all ϵ ∈ (0, 1), we have

TL,λmix(ϵ) ≥
1
π2L

2 logL− C(λ, ϵ)L2 =: tC(λ,ϵ), (3.1)

where C(λ, ϵ) > 0 is a constant, only dependent on λ and ϵ.

Before we start the proof of Proposition 3.1, let us explain the idea. Note that the function
Φ(ξ), defined in (3.2) below, is almost the area enclosed by the x-axis and the path ξ ∈ ΩL.
Intuitively, Φ(∧) is of order L2, while at equilibrium Φ(ξ) is of order L3/2. The second moment
method in [CMT08, Theorem 3.2] does not supply a sharp lower bound on the mixing time. We
adapt the idea in [CMT08, Theorem 3.2] to provide the lower bound in (3.1) by proving the
following.

(i) While the expected equilibrium value µ(Φ) is at most of order L3/2, E[Φ(σ∧t )] is much
bigger than L3/2 for all t ≤ tC(λ,ϵ);

(ii) On the one hand Φ(σµt ) is fairly close to its mean µ(Φ) by Markov’s inequality, and on
the other hand Φ(σ∧t ) is well concentrated around E[Φ(σ∧t )] by controlling its fluctuation
through martingale approach.

Subsection 3.1 prepares all the ingredients for the first step of this strategy, and Subsection 3.2
is dedicated to the second step of the strategy, giving the proof of Proposition 3.1.
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3.1. Ingredients for the lower bound of the mixing time. Inspired by [Wil04, Equa-
tion (1)], Caputo et al. in [CMT08, Equation (2.39)] defined the weighted area function Φ: ΩL →
R by

Φ(ξ) :=
L−1∑
x=1

ξxsin(x), (3.2)

where sin(x) := sin(πxL ) and ξ ∈ ΩL. As [CMT08, Equation (4.3)], we use Lemma 2.3 and
summation by part to obtain

(LΦ)(ξ) =
L−1∑
x=1

sin(x)Lξx = −κLΦ(ξ) + Ψ(ξ), (3.3)

where κL := 1− cos( πL) and

Ψ(ξ) :=

L−1∑
x=1

sin(x)

[
1{ξx−1=ξx=1=0} −

(
λ− 1

λ+ 1

)
1{ξx−1=ξx+1=1}

]
. (3.4)

Since sin(x) ≥ 0 for all x ∈ J0, LK, we have

|Ψ(ξ)| ≤
L−1∑
x=1

sin(x)

[
1{ξx−1=ξx=1=0} +

∣∣∣∣λ− 1

λ+ 1

∣∣∣∣1{ξx−1=ξx+1=1}

]
=: Ψ(ξ). (3.5)

Caputo et al. gave an upper bound on µλL(Φ). In [CMT08, Equation (5.15)], they used coupling
and monotonicity to obtain that for every positive integer k,

sup
λ≥0,L∈2N

sup
x∈J1,L−1K

µλL

(
(ξx)

k

Lk/2

)
<∞.

Consequently, using k = 1 and sin(x) ≤ 1, we have

µλL(Φ) ≤
L−1∑
x=1

µλL(ξx) ≤ cL3/2, (3.6)

where c > 0 does not depend on λ. In addition, Caputo et al. also gave a lower bound on
E[Φ(σ∧t )], which we recall as a lemma below.

Lemma 3.2 (Equation (5.24) in [CMT08]). For all λ ∈ (0, 2), all t ≥ 0, all L ≥ 2 and some
constant c(λ) > 0, we have

E[Φ(σ∧t )] ≥ Φ(σ∧0 )e
−κLt − c(λ)L3/2.

In view of (3.5), we need an upper bound on P
[
σ∧t (x − 1) = σ∧t (x + 1) ∈ {0, 1}

]
for x ∈

J1, L− 1K, which is the following lemma.

Lemma 3.3. For all t ≥ 0, all x ∈ J1, L− 1K and all L ≥ 2, we have

P
[
σ∧t (x− 1) = σ∧t (x+ 1) ∈ {0, 1}

]
≤ C1(λ)

L3/2

x3/2(L− x)3/2
. (3.7)

Proof. Since σ∧t ≥ σµt for all t ≥ 0, we know that for all x ∈ J1, L− 1K,

P
[
σ∧t (x− 1) = σ∧t (x+ 1) ∈ {0, 1}

]
≤ P

[
σµt (x− 1) = σµt (x+ 1) ∈ {0, 1}

]
= µλL

(
ξx−1 = ξx+1 ∈ {0, 1}

)
.
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For all λ ∈ (0, 2), all x ∈ J1, L− 1K ∩ 2N and all L ≥ 2, applying Theorem 2.2, we obtain

µλL(ξx = 0) = λ
Zx(λ)ZL−x(λ)

ZL(λ)
≤ C2(λ)

L3/2

x3/2(L− x)3/2
, (3.8)

and

µλL(ξx−1 = ξx+1 = 0) = λ2
Zx−1(λ)ZL−x−1(λ)

ZL(λ)
≤ C2(λ)

L3/2

x3/2(L− x)3/2
. (3.9)

With the same conditions about λ, x and L above, as [CMT08, Equation (5.23)] we have

µλL(ξx−1 = ξx+1 = 1) =
1 + λ

λ
µλL(ξx = 0). (3.10)

Therefore, by (3.8), (3.9) and (3.10), we obtain (3.7). □

3.2. Proof of the lower bound on the mixing time. Let us detail the second step of the
aforementioned strategy. To prove that Φ(σ∧t ) is well concentrated around its mean E[Φ(σ∧t )],
we do the following.

(i) For a fixed time t0, we use the function F (t, ξ) = exp(κL(t − t0))Φ(ξ) to construct a
Dynkin’s martingale M (see [KL99, Lemma 5.1 in Appendix 1]).

(ii) To estimate the fluctuation of F (t0, σ∧t0) = Φ(σ∧t0), we control the martingale bracket
⟨M.⟩ and the mean of (∂t+L)F (t, σ∧t ), which comes from the construction of Dynkin’s
martingale.

While Φ(σµt ) is at most of order L3/2, Φ(σ∧t0) is much bigger than L3/2 for all t0 ≤ tC(λ,ϵ). This
property of Φ about σµt and σ∧t0 can be used to provide a lower bound on the distance between
µ and P∧

t0 .

Proof of Proposition 3.1. We adapt the approach in [CMT08, Proposition 5.3]. For
C ∈ (0,∞), define

AC :=
{
ξ ∈ ΩL : Φ(ξ) ≤ CL3/2

}
. (3.11)

Using Markov’s inequality and (3.6), we obtain

1− µ(AC) = µ(Φ > CL3/2) ≤ µ(Φ)

CL3/2
≤ c

C
, (3.12)

where the rightmost term is smaller than or equal to ϵ/2 for C ≥ 2c/ϵ. Our next step is to prove
that for any given ϵ > 0, if t0 ≤ tC(λ,ϵ), we have

P∧
t0(AC) ≤ ϵ/2.

In order to obtain such an upper bound, we construct a Dynkin’s martingale and control its
fluctuation. Let t0 be a fixed time, we define a function F : [0, t0]× ΩL → R by

F (t, ξ) := eκL(t−t0)Φ(ξ).

We recall that σ∧t , defined in Subsection 2.1, is the dynamics at time t starting with the maximal
path ∧. Further, we define a Dynkin’s martingale by

Mt := F (t, σ∧t )− F (0, σ∧0 )−
∫ t

0
(∂s + L)F (s, σ∧s )ds. (3.13)

Applying (LΦ)(ξ) = −κLΦ(ξ) + Ψ(ξ) in (3.3), we obtain

(∂t + L)F (t, σ∧t ) = eκL(t−t0)Ψ(σ∧t ). (3.14)

For simplicity of notation, set

B(t) :=

∫ t

0
eκL(s−t0)Ψ(σ∧s )ds. (3.15)
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Now we give an upper bound on E[M2
t ] by controlling the martingale bracket ⟨M.⟩, which

is such that the process
(
M2
t − ⟨M.⟩t

)
t≥0

is a martingale with respect to its natural filtration.
Since there is at most one transition at each coordinate and each transition can change the value
of Mt in absolute value by at most 2eκL(t−t0), we have

∂t⟨M.⟩t ≤
L−1∑
x=1

4e2κL(t−t0) ≤ 4Le2κL(t−t0).

As M0 = 0 and κL = 1− cos
(
π
L

)
≥ π2

4L2 for all L ≥ 4, we obtain

E[M2
t0 ] = E[⟨M.⟩t0 ] ≤

∫ t0

0
4Le2κL(t−t0)dt ≤ 8L3

π2
. (3.16)

Furthermore, we give an upper bound for the mean of B(t0), defined in (3.15). Recalling the
definitions of Ψ and Ψ in (3.4) and (3.5) respectively, we have

E[|B(t0)|] ≤ E
[ ∫ t0

0
eκL(t−t0)Ψ(σ∧t )dt

]
≤ E

[ ∫ t0

0
eκL(t−t0)Ψ(σµt )dt

]
≤ C3(λ)κ

−1
L

L−1∑
x=1

sin(x)
L3/2

x3/2(L− x)3/2

≤ C4(λ)L
3/2. (3.17)

The first inequality uses |Ψ(ξ)| ≤ Ψ(ξ) for all ξ ∈ ΩL. The second inequality is due to two facts:
(1) Ψ(ξ) ≤ Ψ(ξ′) for ξ ≤ ξ′; and (2) σ∧t ≥ σµt . In the third inequality, we use Fubini’s Theorem
to interchange the orders of integration and expectation, and use Lemma 3.3 to give an upper
bound for E[Ψ(σµt )]. In the last inequality, we use the following inequality:

sin(x) = sin
(πx
L

)
≤

min
(
x, L− x

)
π

L
.

Here and now, we try to find the suitable small t0 such that Φ(σ∧t0) is much larger than L3/2

with high probability. We note that Φ(σ∧0 ) ≥ 1
36L

2 and κL ≤ π2

2L2 for all L ≥ 2. Let C ≥ 1, and
define

t0 :=
1

π2
L2 logL− CL2.

If t0 ≤ 0, nothing needs to be done (for L ≤ 4, t0 ≤ 0). In the remaining of this subsection,
we assume t0 > 0. Then for all L ≥ 2, t0κL ≤ 1

2 logL − C. Moreover, there exists a universal
constant C0 ≥ 1 such that if C ≥ C0, we have

1

36
eC ≥ 3C.

By Lemma 3.2, for all C ≥ max
(
C0, c(λ)

)
, we have

E[Φ(σ∧t0)] ≥ 3CL3/2 − c(λ)L3/2 ≥ 2CL3/2.

Then, if Φ(σ∧t0) ≤ CL3/2 (i.e. σ∧t0 ∈ AC , defined in (3.11)), it implies∣∣Φ(σ∧t0)− E
[
Φ(σ∧t0)

]∣∣ ≥ CL3/2

and
P∧
t0(AC) ≤ P

[
|Φ(σ∧t0)− E[Φ(σ∧t0)]| ≥ CL3/2

]
. (3.18)
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In addition, recalling Φ(σ∧t0) = F (t0, σ
∧
t0) =Mt0 +F (0, σ∧0 )+B(t0) in (3.13) and using Markov’s

inequality, we obtain

P
[∣∣Φ(σ∧t0)− E[Φ(σ∧t0)]

∣∣ ≥ CL3/2
]

=P
[∣∣Mt0 +B(t0)− E[B(t0)]

∣∣ ≥ CL3/2
]

≤P
[∣∣Mt0

∣∣ ≥ 1

3
CL3/2

]
+ P

[∣∣B(t0)
∣∣ ≥ 1

3
CL3/2

]
≤
9E[M2

t0 ]

C2L3
+

3E[|B(t0)|]
CL3/2

,

(3.19)

where the second last inequality holds for C > 3C4(λ) by E[|B(t0)|] ≤ C4(λ)L
3/2 in (3.17). The

last term in (3.19) is smaller than or equal to ϵ/2 for C ≥ max
(

18
π
√
ϵ
, 12C4(λ)

ϵ

)
, on account of

E[M2
t0 ] ≤

8L3

π2 in (3.16) and (3.17). Combining (3.12), (3.18) and (3.19), we know that

∥P∧
t0 − µ∥TV ≥ µ(AC)− P∧

t0(AC) ≥ 1− ϵ, (3.20)

which holds for C ≥ max{2c
ϵ , C0, 3C4(λ),

18
π
√
ϵ
, 12C4(λ)

ϵ } =: C(λ, ϵ). Therefore, for C ≥ C(λ, ϵ),
we have

TL,λmix(ϵ) ≥
1

π2
L2 logL− CL2.

□

4. Upper bound on the mixing time for λ ∈ (0, 1]

This section is devoted to providing an upper bound on the mixing time of the dynamics for
the regime λ ∈ (0, 1]. For any ξ ∈ ΩL, by the triangle inequality, we have

∥P ξt − Pµt ∥TV ≤
∑
ξ′∈ΩL

µ(ξ′)∥P ξt − P ξ
′

t ∥TV ≤ max
ξ′∈ΩL

∥P ξt − P ξ
′

t ∥TV. (4.1)

To give an upper bound for the term in the rightmost hand side above, we use the following
characterization of total variation distance. Let α and β be two probability measures on ΩL.
We say that ϑ is a coupling of α and β, if ϑ is a probability measure on ΩL × ΩL such that
ϑ(ξ ×ΩL) = α(ξ) and ϑ(ΩL × ξ′) = β(ξ′) for any elements ξ, ξ′ ∈ ΩL. The following proposition
says that the total variation distance measures how well we can couple two random variables
with distribution laws α and β respectively.

Proposition 4.1 (Proposition 4.7 [LP17]). Let α and β be two probability distributions on
ΩL. Then

∥α− β∥TV = inf
{
ϑ
({

(ξ, ξ′) : ξ ̸= ξ′
})

: ϑ is a coupling of α and β
}
.

The graphical construction in Subsection 2.1 provides a coupling between P ξt and P ξ
′

t , which
preserves the monotonicity asserted in Proposition 2.1. Therefore, σξt lies between σ∨t and σ∧t
for any ξ ∈ ΩL. Applying Proposition 4.1, we obtain

∥P ξt − P ξ
′

t ∥TV ≤ P[σξt ̸= σξ
′

t ] ≤ P[σ∧t ̸= σ∨t ], (4.2)

where the last inequality is due to the fact that after the dynamics starting from the two extremal
paths have coalesced, we must have σ∧t = σξt = σ∨t for any ξ ∈ ΩL. This argument was used
in [CMT08, Theorem 3.1] to obtain an upper bound on the mixing time. Comparing with the
coupling in [CMT08, Subsection 2.2.1], the graphical construction in Subsection 2.1 provides
more independent flippable corners and maximizes the fluctuation of the area enclosed by σ∧t
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and σ∨t . Adapting the approach in [LL20, Section 7], we use a supermartingale approach to have
a good control of the fluctuation of the area enclosed by σ∧t and σ∨t to obtain a sharp upper
bound on the mixing time. Let the coalescing time τ be

τ := inf{t ≥ 0 : σ∧t = σ∨t },

which is the first instant when the dynamics starting from the two extremal paths coalesce. By
(4.1) and (4.2), we obtain

dL,λ(t) ≤ P
[
σ∧t ̸= σ∨t

]
= P [τ > t] . (4.3)

In this section, our goal is to show that for any given δ > 0 and all L sufficiently large, with high
probability, we have

τ ≤ 1 + δ

π2
L2 logL.

We adapt the approach in [LL20, Section 7] to achieve this goal. In practice, it is more feasible
to couple two dynamics when, at least, one of them is at equilibrium. Let

τ1 : = inf{t ≥ 0, σ∧t = σµt },
τ2 : = inf{t ≥ 0, σ∨t = σµt },

(4.4)

where we recall that the dynamics (σµt )t≥0 is constructed by first taking the initial path ξ by
sampling µ at t = 0 and then using the graphical construction for t > 0. By the definition of τ ,
we know that

τ = max
(
τ1, τ2

)
.

For this goal, it is sufficient to prove the following proposition.

Proposition 4.2. For i ∈ {1, 2}, any given λ ∈ (0, 1] and δ > 0, we have

lim
L→∞

P
[
τi ≤ (1 + δ)

1

π2
L2 logL

]
= 1. (4.5)

Theorem 1.1 is proved as a combination of Proposition 3.1 and Proposition 4.2. Therefore,
there is a cutoff in the Markov chains for λ ∈ (0, 1]. Since the proofs about τ1 and τ2 in
Proposition 4.2 are similar, we only give the proof of (4.5) for τ1. For any given δ > 0, set

tδ := (1 + δ)
1

π2
L2 logL.

We outline the idea for the proof. We define a weighted area function At in (4.9) below, which is
almost the area enclosed by the paths σ∧t and σµt at time t. Moreover, (At)t≥0 is a supermartingale
when λ ∈ (0, 1]. Due to this, we obtain that at time tδ/2 = (1 + δ

2)
1
π2L

2 logL, Atδ/2 is close to
equilibrium. After time tδ/2, we estimate the fluctuation of (At)t≥tδ/2 by the supermartingale
approach applying [LL20, Proposition 29], and then relate the time interval with the fluctuation
to obtain (4.5).

4.1. A weighted area function. In this subsection, we define an area function At. First,
inspired by [Wil04, Equation (1)], we define a function Φβ : ΩL → [0,∞) given by

Φβ(ξ) :=

L−1∑
x=1

ξxcosβ(x),

where cosβ(x) := cos
(
β(x−L/2)

L

)
, and β is a constant in (2π/3, π). The constant β is only

dependent on δ and sufficiently close to π, which will be chosen in the proof of Lemma 4.4 below.
We can see that Φβ(ξ) is approximately the area enclosed by the x-axis and the path ξ ∈ ΩL.
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Throughout this chapter, we omit the index β in Φβ and cosβ as much as possible. Observe that
if ξ and ξ′ are two elements of ΩL satisfying ξ ≤ ξ′, then

Φ(ξ) ≤ Φ(ξ′). (4.6)

The minimal increment of the function Φ is

δmin := min
ξ≤ξ′,ξ ̸=ξ′

(
Φ(ξ′)− Φ(ξ)

)
= 2 cos

(β(L/2− 1)

L

)
, (4.7)

and

2 cos
(β(L/2− 1)

L

)
≥ 1

2
(π − β) (4.8)

for L ≥ 6 and β ∈ (2π/3, π), where we use the inequality cos(π/2 − x) = sinx ≥ x/2 for
x ∈ [0, π/3]. Let the weighted area function A : [0,∞) 7→ [0,∞) be

At :=
Φ(σ∧t )− Φ(σµt )

δmin
. (4.9)

We observe that τ1, defined in (4.4), is the first time at which At reaches zero. Moreover, At
equals to zero if and only if σ∧t equals to σµt . If τ1 ≤ tδ/2, we are done. In the rest of this section,
we assume τ1 > tδ/2.

Take η > 0 and sufficiently small, and K := ⌈1/(2η)⌉. We define a sequence of successive
stopping times (Ti)Ki=2 by

T2 := inf
{
t ≥ tδ/2 : At ≤ L

3
2
−2η
}
,

and for 3 ≤ i ≤ K,
Ti := inf

{
t ≥ Ti−1 : At ≤ L

3
2
−iη
}
.

For consistency of notations, we set T∞ := max
(
τ1, tδ/2

)
. The remaining of this section is

devoted to proving the following proposition.

Proposition 4.3. Given δ > 0, if η is chosen to be a sufficiently small positive constant
with K = ⌈1/(2η)⌉ > 1/(2η), we have

lim
L→∞

P
[
{T2 = tδ/2} ∩

( K⋂
i=3

{∆Ti ≤ 2−iL2}
)
∩ {T∞ − TK ≤ L2}

]
= 1,

where ∆Ti := Ti − Ti−1 for 3 ≤ i ≤ K.

If Proposition 4.3 holds, for L sufficiently large, we have

τ1 = T∞ ≤ tδ/2 +

K∑
i=3

2−iL2 + L2 ≤ (1 + δ)
1

π2
L2 logL.

Then Proposition 4.2 is proved. The idea for Proposition 4.3 is from [LL20, Section 7] as follows:
1. We first show that the decay rate of At is at least 1 − cos( πL), and then we obtain

T2 = tδ/2 with high probability.
2. During the time interval [Ti−1, Ti] for 3 ≤ i ≤ K, we apply the supermartingale approach

([LL20, Proposition 29]) to show that with high probability

⟨A.⟩Ti − ⟨A.⟩Ti−1 ≤ L3−2(i−1)η+ 1
2
η.

Similarly for the time interval [TK , T∞], we apply [LL20, Proposition 29] to show that
with high probability

⟨A.⟩T∞ − ⟨A.⟩TK ≤ L2.
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3. We compare T∞−TK with ⟨A.⟩T∞ −⟨A.⟩TK . As ∂t⟨A.⟩ ≥ 1 (justified in Subsection 4.3)
for all t < T∞, we have

T∞ − TK ≤
∫ T∞

TK
∂t⟨A.⟩dt = ⟨A.⟩T∞ − ⟨A.⟩TK .

For 3 ≤ i ≤ K, to compare ⟨A.⟩Ti − ⟨A.⟩Ti−1 with Ti − Ti−1, we provide a better lower
bound on ∂t⟨A.⟩ in terms of the highest point of σ∧t and the maximal length of the
monotone segments of σµt in Lemma 4.7.

4. We use induction method to show that Ti − Ti−1 ≤ 2−iL2 for all i ∈ J3,KK, arguing by
contradiction.

4.2. The proof of T2 = tδ/2. The main task of this subsection is to prove that the function
At has a contraction property, due to which we obtain T2 = tδ/2 with high probability. Above
all, we want to understand how the generator L acts on the function Φ. We have

(LΦ)(ξ) =
L−1∑
x=1

cos(x)Lξx.

We recall Lemma 2.3: for any ξ ∈ ΩL,

Lξx = (∆ξ)x + 1{ξx−1=ξx+1=0} +
(1− λ

1 + λ

)
1{ξx−1=ξx+1=1}.

For ξ, ξ′ ∈ ΩL, we have
L−1∑
x=1

cos(x)
(
(∆ξ′)x − (∆ξ)x

)
= −

(
1− cos

(β
L

)) L−1∑
x=1

cos(x)(ξ′x − ξx). (4.10)

Considering

Lξx − (∆ξ)x = 1{ξx−1=ξx+1=0} +
(1− λ

1 + λ

)
1{ξx−1=ξx+1=1},

we see that both terms in the right-hand side are nonnegative and monotonically decreasing in
ξ for λ ∈ (0, 1]. Hence, if ξ ≤ ξ′, we know that

Lξx − (∆ξ)x ≥ Lξ′x − (∆ξ′)x. (4.11)

For simplicity of notation, we set

γ = γL,β := 1− cos(β/L).

On the grounds of Lemma 2.3, (4.10) and (4.11), if ξ ≤ ξ′, we obtain

(LΦ)(ξ′)− (LΦ)(ξ) =
L−1∑
x=1

cos(x)
(
(∆ξ′)x − (∆ξ)x + (Lξ′x − (∆ξ′)x)− (Lξx − (∆ξ)x)

)
≤

L−1∑
x=1

cos(x)
(
(∆ξ)′x − (∆ξ)x

)
≤ −γ

(
Φ(ξ′)− Φ(ξ)

)
. (4.12)

Now we are ready to prove that T2 = tδ/2 with high probability.

Lemma 4.4. For all ϵ > 0, all sufficiently small δ > 0 and 0 < η < δ/10, if L is sufficiently
large, we have

P
[
T2 > tδ/2

]
≤ ϵ.
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Proof. By σ∧t ≥ σµt and (4.12), we obtain
d

dt
E
[
Φ(σ∧t )− Φ(σµt )

]
= E

[
(LΦ)(σ∧t )− (LΦ)(σµt )

]
≤ −γE

[
Φ(σ∧t )− Φ(σµt )

]
.

(4.13)

Using (4.13), Φ(σ∧0 ) ≤ 1
2L

2 and Φ(ξ) ≥ 0 for all ξ ∈ ΩL, we obtain

E
[
Φ(σ∧t )− Φ(σµt )

]
≤ e−γt

(
Φ(σ∧0 )− Φ(σµ0 )

)
≤ 1

2
L2e−γt. (4.14)

Thus, applying Markov’s inequality, we achieve

P[T2 > tδ/2] = P[Atδ/2 > L
3
2
−2η]

≤ 1

2δmin
L2η+ 1

2 e−γtδ/2 ,
(4.15)

where the last inequality uses (4.14) and the definition of At in (4.9). Recalling γ = 1−cos(β/L)
and using the inequality 1− cosx ≥ 1

2x
2 − 1

24x
4 for all x ≥ 0, we have

γtδ/2 ≥
β2

2π2
(1 +

δ

2
) logL− β4

24L2
(1 +

δ

2
) logL.

For δ > 0 sufficiently small and 0 < η < δ/10, we choose

β = π

√
1 + 9

20δ

1 + δ
2

∈ (2π/3, π)

which satisfies
1

2
(1 +

δ

2
)
β2

π2
=

1

2
+

9

40
δ >

1

2
+ 2η.

With this choice of β, the rightmost term of (4.15) vanishes as L tends to infinity. □

4.3. The estimation of ⟨A.⟩Ti − ⟨A.⟩Ti−1. Due to Dynkin’s martingale formula, we know
that

At −A0 −
∫ t

0
LAsds

is a martingale. Moreover, we let ⟨A.⟩t represent the predictable bracket associated with this
martingale. The objective of this subsection is to show that ⟨A.⟩Ti − ⟨A.⟩Ti−1 is small for all
i ∈ J3,KK. For any i ∈ J3,KK, let

∆i⟨A⟩ := ⟨A.⟩Ti − ⟨A.⟩Ti−1 , (4.16)

and let
∆∞⟨A⟩ := ⟨A.⟩T∞ − ⟨A.⟩TK . (4.17)

We have LAs ≤ 0, according to (4.12), σ∧t ≥ σµt , and the monotonicity of the function Φ stated
in (4.6). Then, At is a supermartingale for λ ∈ (0, 1]. Its jump amplitudes in absolute value are
bounded below by 1 for t < τ1 where the absorption time τ1 is defined in (4.4). Moreover, for
t < τ1 we can always find one flippable corner in σ∧t and one in σµt which can change the value
of At, and the total rates of these two corners are at least 1. Therefore, the jump rates of At
are least 1 for t < τ1. We refer to Figure 2 for illustration: those flippable corners in σµt and
σ∧t which are not totally colored black can change the value of At, and the total rates of these
corners are at least 1. Now, we are in the setting to apply [LL20, Proposition 29] which, under
some condition, allows to control hitting times of supermartingales in terms of the martingale
bracket.
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Proposition 4.5 (Proposition 29 in [LL20]). Let (Mt)t≥0 be a pure-jump supermartingale
with bounded jump rates and jump amplitudes, and M0 ≤ a almost surely. Let ⟨M.⟩, with an
abuse of notation, denote the predictable bracket associated with the martingale Mt = Mt − It
where I is the compensator of M. Given b ∈ R and b ≤ a, we set

τb := inf{t ≥ 0 : Mt ≤ b}.

If the amplitudes of the jumps of (Mt)t≥0 are bounded above by a− b, for any u ≥ 0, we have

P
[
⟨M.⟩τb ≥ (a− b)2u

]
≤ 8u−1/2. (4.18)

Now we apply Proposition 4.5 to prove that the event

AL :=
{
∀i ∈ J3,KK,∆i⟨A⟩ ≤ L3−2(i−1)η+ 1

2
η
}⋂{

∆∞⟨A⟩ ≤ L2
}

has almost the full mass, which is the following lemma.

Lemma 4.6. We have
lim
L→∞

P[AL] = 1. (4.19)

Proof. We just need to show that the probability of its complement A∁
L is almost zero. We

apply Proposition 4.5 to (At+Ti−1)t≥0 with ai = L
3
2
−(i−1)η and bi = L

3
2
−iη. For every i ∈ J3,KK,

we obtain
P
[
∆i⟨A⟩ ≥ (L

3
2
−(i−1)η − L

3
2
−iη)2ui

]
≤ 8u

− 1
2

i , (4.20)

where we choose ui = L
1
2
η(1− L−η)−2, satisfying(

L
3
2
−(i−1)η − L

3
2
−iη
)2
ui = L3−2(i−1)η+ 1

2
η.

We see that ui tends to infinity as L tends to infinity. Accordingly, the rightmost term in (4.20)
vanishes as L tends to infinity.

We apply Proposition 4.5 to (At+TK )t≥0 with a∞ = L
3
2
−Kη and b∞ = 0. We choose u∞ such

that (a∞ − b∞)2u∞ = L2, i.e.
u∞ = L−1+2Kη,

which tends to infinity due to K = ⌈1/(2η)⌉ > 1/(2η). Thus P[∆∞⟨A⟩ ≥ L2] tends to zero as L
tends to infinity. Since K is a constant, we have

lim
L→∞

P
[
A∁
L

]
= 0.

□

4.4. The comparison of Ti − Ti−1 to ∆i⟨A⟩. As explained in Subsection 4.3, we have
∂t⟨A.⟩ ≥ 1 for all t < T∞. Therefore, we obtain

∆∞⟨A⟩ =
∫ T∞

TK
∂t⟨A.⟩dt ≥

∫ T∞

TK
1dt = T∞ − TK .

Hence, when the event AL holds, we obtain

T∞ − TK ≤ ∆∞⟨A⟩ ≤ L2.

Now we control the intermediate increment Ti−Ti−1 for 3 ≤ i ≤ K. To do that, we compare
Ti−Ti−1 with ⟨A.⟩Ti−⟨A.⟩Ti−1 = ∆i⟨A.⟩. First, we give a lower bound on ∂t⟨A.⟩, which is related
with: (a) the maximal contribution among all the coordinates x ∈ J0, LK in the definition of At;
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and (b) the amount of flippable corners in σµt or σ∧t that can change the value of At. Considering
the definition of At in (4.9), set

H(t) := max
x∈J0,LK

σ∧t (x). (4.21)

For a lower bound on the quantity mentioned in (b), we need the maximal length of the monotone
segment of σµt . For ξ ∈ ΩL, we define

Q1(ξ) := max{n ≥ 1,∃i ∈ J0, L− nK,∀x ∈ Ji+ 1, i+ nK, ξx − ξx−1 = 1},
Q2(ξ) := max{n ≥ 1,∃i ∈ J0, L− nK,∀x ∈ Ji+ 1, i+ nK, ξx − ξx−1 = −1},

and
Q(ξ) := max

(
Q1(ξ), Q2(ξ)

)
. (4.22)

Using these two quantities H(t) and Q(σµt ), we obtain a lower bound for ∂t⟨A.⟩, which is the
following lemma.

Lemma 4.7. We have

∂t⟨A.⟩ ≥ max

(
1,

λδminAt
3(1 + λ)H(t)Q(σµt )

)
. (4.23)

Proof. We observe that At displays a jump whenever either σµt or σ∧t flips a corner. Note
that by (4.9) and (4.7), any jump amplitude in absolute value of A is at least 1. Since any
flippable corner is flipped with rate at least

min
{1
2
,

1

1 + λ
,

λ

1 + λ

}
=

λ

1 + λ
,

we obtain

∂t⟨A.⟩t ≥
λ

1 + λ
#
{
x ∈ Bt : ∆σµt (x) ̸= 0

}
where Bt :=

{
x ∈ J1, L − 1K : ∃y ∈ Jx − 1, x + 1K, σ∧t (y) ̸= σµt (y)

}
. For simplicity of notation,

set Dt :=
{
x ∈ Bt : ∆σµt (x) ̸= 0

}
. Let Ja, bK denote the horizontal coordinates of a maximal

connected component of Bt, for which we refer to Figure 2 for illustration. Since σµt can not be
monotone in the entire domain Ja, bK, we know that

#(Dt ∩ Ja, bK) ≥ 1.

a1 b1 a2 b20 L

σ∧
t

σµ
t

y

x

Figure 2. In this figure, σ∧
t consists of the red line segments and black thick line segments,

while σµ
t consists of the blue line segments and black thick line segments. Moreover, Bt =

Ja1, b1K ∪ Ja2, b2K, #(Dt ∩ Ja1, b1K) = 3, and #(Dt ∩ Ja2, b2K) = 13. In Ja2, b2K, the monotone
segments of σµ

t are Ja2, a2+1K, Ja2+1, a2+3K, Ja2+3, a2+5K, and so on as shown in the figure.

In Bt, we decompose the path associated with σµt into consecutive maximal monotone segments.
Then we know that in Bt every two consecutive components correspond to one flippable corner,
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which is a point in Dt. As any maximal monotone component is at most of length Q(σµt ) defined
in (4.22), we obtain

#(Dt ∩ Ja, bK) ≥ 1

2

⌊
b− a

Q(σµt )

⌋
≥ 1

3

b− a

Q(σµt )
. (4.24)

In addition, we observe that
b∑

x=a

(σ∧t (x)− σµt (x))cos(x)

δmin
≤ (b− a)

H(t)

δmin
, (4.25)

where H(t) is defined in (4.21). Summing up all such intervals Ja, bK and using (4.24) and (4.25),
we obtain

At ≤
3

δmin
H(t)Q(σµt )#Dt.

Therefore, we have

∂t⟨A.⟩ ≥
λ

1 + λ
#Dt ≥

λδmin

3(1 + λ)

At
H(t)Q(σµt )

.

This yields the desired result. □

To give a good lower bound for ∂t⟨A.⟩, we need to control Q(σµt ) and H(t). Our next step is
to give an upper bound on Q(σµt ), which is the following lemma. We recall the notation

tδ = (1 + δ)
1

π2
L2 logL.

Lemma 4.8. We have

lim
L→∞

P
[
∃t ∈ [0, tδ] : Q(σµt ) > (logL)2

]
= 0. (4.26)

Proof. Firstly, we prove that there exists a constant C(λ) > 0 such that for all L ≥ 2

µ
(
Q(ξ) > (logL)2

)
≤ 2C(λ)L5/22−(logL)2 . (4.27)

Since there are at most L starting positions for a monotone segments either monotonically
increasing or decreasing, we have

#{ξ ∈ ΩL : Q(ξ) > (logL)2} ≤ L21+L−(logL)2 .

Moreover, as λN (ξ) ≤ 1 for λ ∈ (0, 1] and any ξ ∈ ΩL, we obtain

µ
(
Q(ξ) > (logL)2

)
≤ C5(λ)

L21+L−(logL)2

2LL−3/2
= 2C5(λ)L

5/22−(logL)2 , (4.28)

where we use the inequality ZL(λ) ≥ C5(λ)
−12LL−3/2 for all L ≥ 2 and some C5(λ) > 0 by

Theorem 2.2. Secondly, since there are at most L corners in any path ξ ∈ ΩL, we have
L−1∑
x=1

Rx(ξ) ≤ L,

where Rx(ξ) is defined in (1.5). Therefore, for any subset A ⊂ ΩL and s ≥ 0,

P
[
∀t ∈ [s, s+ L−1] : σµt ∈ A | σµs ∈ A

]
≥ e−1. (4.29)

Taking A := {ξ ∈ ΩL : Q(ξ) > (logL)2}, we define the occupation time to be

u(t) :=

∫ t

0
1A(σ

µ
s )ds. (4.30)

By Fubini’s Theorem, we obtain
E[u(2tδ)] = 2tδµ(A). (4.31)
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Using (4.29) and strong Markov property, we give a lower bound for E[u(2tδ)]:

E[u(2tδ)] ≥ e−1L−1P[∃t ∈ [0, tδ] : σ
µ
t ∈ A]. (4.32)

By (4.31), (4.32) and (4.27), we have

P
[
∃t ∈ [0, tδ] : σ

µ
t ∈ A

]
≤ 2eLtδµ(A) ≤ 4eC5(λ)L

7/2tδ2
−(logL)2 , (4.33)

which vanishes as L tends to infinity. Therefore, we conclude the proof. □

The last ingredient for the proof of Proposition 4.3 is to control H(t), defined in (4.21).
Recall that tδ = (1 + δ) 1

π2L
2 logL.

Lemma 4.9. We have

lim
L→∞

sup
t∈[tδ/2,tδ]

P
[
H(t) ≥ 2L

1
2 (logL)2

]
= 0. (4.34)

Intuitively, for λ ∈ (0, 2),
( ξ[xL]√

L

)
x∈[0,1] under µλL converges to Brownian excursion. (A rough

argument for the intuition goes as follows. By Equation (3.8), we have

µλL

(
∃x ∈ JL1/3, L− L1/3K : ξx = 0

)
≤ 2c(λ)

L/2∑
x=L1/3

L3/2

x3/2(L− x)3/2
≤ c′(λ)L−1/6.

For ξ ∈ ΩL, define
L(ξ) := sup {x ≤ L/2 : ξx = 0} ,
R(ξ) := inf {x ≥ L/2 : ξx = 0} ,

and we observe that

µλL(·|L = ℓ,R = r) = µλℓ ⊗P(·| min
1≤i<r−ℓ

Si > 0;Sr−ℓ = 0)⊗ µλL−r,

where P denotes the law of the symmetric nearest-neighbor simple random walk on Z. As(S[x(r−ℓ)]√
r−ℓ

)
x∈[0,1] under the law P(·|min1≤i<r−ℓ Si > 0;Sr−ℓ = 0) converges to the Brownian

excursion, we conclude the proof.) Therefore, the dynamics (σ∧t )t≥0 is like the simple exclusion
process, and we can apply [Lac16b, Theorem 2.4] to obtain Lemma 4.9. We postpone the proof
in Appendix 2.A. Now, we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. We define the event HL where the highest point of σ∧t is not
too high and there are a lot of flippable corners in σµt during the time interval [tδ/2, tδ/2 + L2],

HL =

{∫ tδ/2+L
2

tδ/2

1
{H(t)≤2L

1
2 (logL)2}

⋂
{Q(σµ

t )≤(logL)2}
dt ≥ L2

(
1− 2−(K+1)

)}
.

First, we show that HL holds with high probability. We have

P
[
H∁
L

]
= P

[ ∫ tδ/2+L
2

tδ/2

1
{H(t)>2L

1
2 (logL)2}

⋃
{Q(σµ

t )>(logL)2}
dt ≥ L22−(K+1)

]

≤ P
[ ∫ tδ/2+L

2

tδ/2

1
{H(t)>2L

1
2 (logL)2}

dt ≥ L22−(K+2)

]

+ P
[ ∫ tδ/2+L

2

tδ/2

1{Q(σµ
t )>(logL)2}dt ≥ L22−(K+2)

]
, (4.35)

which vanishes as L tends to infinity, grounded on Markov’s inequality, Lemma 4.8, Lemma 4.9
and the fact that K is a constant.
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From now on, we assume the event AL ∩HL ∩ {T2 = tδ/2}. Based on (4.35), Lemma 4.6 and
Lemma 4.8, we have

lim
L→∞

P
[
AL ∩HL ∩ {T2 = tδ/2}

]
= 1.

By induction, we show that ∆Tj = Tj −Tj−1 ≤ 2−jL2 for all j ∈ J3,KK. We argue by contradic-
tion: let i0 be the smallest integer satisfying

∆Ti0 > 2−i0L2.

We know that

∆i0⟨A⟩ ≥
∫ Ti0−1+2−i0L2

Ti0−1

∂t⟨A.⟩1{H(t)≤2L
1
2 (logL)2}∩{Q(σµ

t )≤(logL)2}
dt. (4.36)

According to Lemmas 4.7, 4.8 and 4.9, we have a lower bound for ∂t⟨A.⟩ when the indicator
function equals to 1. That bound is

∂t⟨A.⟩ ≥
λδmin

3(1 + λ)

At
H(t)Q(σµt )

≥ λδmin

6(1 + λ)

At

L
1
2 (logL)4

. (4.37)

Since T2 = tδ/2 and ∆Tj = Tj − Tj−1 ≤ 2−jL2 for j < i0, we know that

Ti0−1 ≤ tδ/2 + L2
i0−1∑
j=3

2−j ≤ tδ/2 + (1− 2−(i0−1))L2,

and then Ti0−1 + 2−i0L2 ≤ tδ/2 + L2. Moreover, when the assumption HL holds, the indicator
function

1
{H(t)≤2L

1
2 (logL)2}∩{Q(σµ

t )≤(logL)2}
is equal to 1 on a set, which is of Lebesgue measure at least

(2−i0 − 2−(K+1))L2 ≥ 2−(K+1)L2. (4.38)

Combining (4.36), (4.37) and (4.38), we obtain

∆i0⟨A⟩ ≥ 2−(K+1)L2 λδmin

6(1 + λ)

At

L
1
2 (logL)4

≥ 2−(K+1) λδmin

6(1 + λ)
L3−i0η(logL)−4, (4.39)

where the last inequality uses the fact that At > L
3
2
−i0η, for t < Ti0 . In addition, since we are in

AL, we know that
∆i0⟨A⟩ ≤ L3−2(i0−1)η+ 1

2
η. (4.40)

However, as i0 ≥ 3, we have

3− 2(i0 − 1)η +
1

2
η < 3− i0η.

Therefore, there is a contradiction between (4.39) and (4.40), as long as L is large enough. □

5. Upper bound on the dynamics starting from the extremal paths for λ ∈ (1, 2)

For the pinning model without positive constraint (see [CMT08, Section 1]), the critical value
is λc = 1, while the critical value is λc = 2 for the pinning model with positive constraint. Due
to the repulsion effect of the impenetrable wall, the process (At)t≥0 defined in Subsection 4.3 is
not a supermartingale for λ ∈ (1, 2). But there is still monotonicity in the dynamics starting
with the maximal (or minimal) path for λ ∈ (1, 2), which can be exploited to provide an upper
bound on the mixing time by applying the censoring inequality in [PW13, Theorem 1.1]. This
inequality says that canceling some prescribed updates slows down the mixing of the Glauber
dynamics starting from the maximal (or minimal) configuration of a monotone spin system.
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Let us state the setting for applying the censoring inequality. A censoring scheme is a càdlàg
function defined by

C : R+ → P(Θ),

where Θ is defined in (2.1) and P(Θ) is the set of all subsets of Θ. The censored dynamics with a
censoring scheme C is the dynamics obtained from the graphical construction in Subsection 2.1,
except that the update at time t is canceled if and only if it is an element of C(t). In other words,
we construct the dynamics by using the graphical construction in Subsection 2.1 with one extra
rule: if T ↑

(x,z) or T ↓
(x,z) rings at time t, the update is performed if and only if (x, z) ̸∈ C(t). Let

(σξ,Ct )t≥0 denote the trajectory of the censored dynamics with a censoring scheme C and starting
from the path ξ ∈ ΩL, and let P ξ,Ct denote the law of distribution of the time marginal σξ,Ct .

The Glauber dynamics of this polymer pinning model is a monotone spin system in the sense
of [PW13, Subsection 1.1] (detailed in Appendix 2.B), and we refer to Figure 5 in Appendix 2.B
for a quick look. The following proposition follows directly from [PW13, Theorem 1.1].

Proposition 5.1. For any prescribed censoring scheme C, for all λ ∈ [0,∞), all t ≥ 0 and
ξ ∈

{
∧,∨

}
, we have

∥P ξt − µ∥TV ≤ ∥P ξ,Ct − µ∥TV. (5.1)

Besides Proposition 5.1, we need the two following results in the proof of the upper bound
on the mixing time. Firstly, by [LP17, Lemmas 20.5 and 20.11], we know that the asymptotic
rate of convergence to equilibrium of this reversible Markov chain is

lim
t→∞

t−1 log dL,λ(t) = −gapL,λ, (5.2)

where gapL,λ > 0 is the spectral gap defined in (1.12). By monotonicity of the Glauber dynamics
and (4.3), for all λ > 0 we have

dL,λ(t) ≤ P
(
σ∧t ̸= σ∨t

)
= P

(
Φ(σ∧t )− Φ(σ∨t ) ≥ 2 sin( πL)

)
, (5.3)

where Φ(ξ) is defined in (3.2). Moreover, for all λ > 0, by [CMT08, Equation (4.1)] we have

E
[
Φ(σ∧t )

]
− E

[
Φ(σ∨t )

]
≤ L2

2 e
−tκL .

Applying Markov’s inequality, we reclaim the useful result in [CMT08].

Lemma 5.2. For all λ > 0, we have

dL,λ(t) ≤ L2e−κLt

4 sin( πL)
. (5.4)

Plugging this into (5.2), we obtain

gapL,λ ≥ κL = 1− cos
(π
L

)
. (5.5)

Secondly, the following lemma is an application of the Cauchy-Schwarz inequality and the
reversibility of the Markov chain. For reference, we mention [CLM+12, Equation (2.6)].

Lemma 5.3. For any probability distribution ν on ΩL, we have

∥νPt − µ∥TV ≤ 1

2
e−t·gapL,λ

√
Varµ(ρ), (5.6)

where ρ := dν
dµ and Varµ(ρ) := µ(ρ2)− µ(ρ)2.
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We define
GL :=

{
(x, 1) : x ∈ J2, L− 2K ∩ 2N

}
(5.7)

where T ↑
(x,1) or T ↓

(x,1) rings, the update—in the graphical construction of Subsection 2.1—changes
the number of contact points N , defined in (1.1). Moreover, GL corresponds to the centers of
the green squares shown in Figure 5. Before we start the proof of the upper bound on the mixing
time for the dynamics starting with the maximal path ∧, we outline the idea for Proposition 5.4
with λ ∈ (1, 2).

(i) We elaborate a censoring scheme C, where C(t) = GL for t < tδ/2 and C(t) = ∅ for
t ≥ tδ/2. Therefore the dynamics (σ∧,Ct )0≤t<tδ/2 does not touch the x−axis except at
the two coordinates x = 0, L.

(ii) By Remark 1.2 and Theorem 1.1, the distribution of σ∧,Ctδ/2
is close to µ0L in total variation

distance.
(iii) As the Radon-Nikodym derivative of µ0L with respect to µλL is bounded by a constant,

we apply Lemma 5.3 and use (5.5) to conclude the proof.

Proposition 5.4. For any λ ∈ (1, 2), any ϵ > 0 and any δ > 0, if L is sufficiently large, we
have

TL,∧mix (ϵ) ≤
1 + δ

π2
L2 logL. (5.8)

Proof. Recall that N is the number of contact points, defined in (1.1). We run the dynamics
starting from the maximal path ∧, censoring those updates which change the value of contact
points N for t < tδ/2. More precisely, recalling tδ = (1 + δ) 1

π2L
2 logL, we present a censoring

scheme C : R+ → P(Θ), defined by

C(t) :=

{
GL if t ∈ [0, tδ/2),

∅ if t ∈ [tδ/2,∞).

We recall that σ∧,Ct is the dynamics constructed by using the graphical construction with one
extra rule: when the clock process T ↑

(x,1) or T ↓
(x,1) rings for any x ∈ J1, L−1K∩2N and all t < tδ/2,

we do not update. We refer to Figure 3 for illustration. While t ≥ tδ/2, (σ
∧,C
t )t≥tδ/2 is constructed

by the graphical construction in Subsection 2.1 without censoring.

××

1
2

1
2

1
2

0 L

σ∧,C
t

y

x

Figure 3. A graphical representation of the jump rates for the dynamics σ∧,C
t when t < tδ/2.

Those red dashed corners are not available and labeled with ×, while the other corners are
flippable with rate 1/2.

Now we show that P∧,C
tδ/2

is close to µ0L. By Remark 1.2, applying Theorem 1.1, for all
λ ∈ (1, 2), all δ > 0 and all ϵ > 0, if L is sufficiently large, we have

∥P∧,C
tδ/2

− µ0L∥TV ≤ ϵ/2. (5.9)
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For any ξ ∈ ΩL, define

ρ(ξ) :=
dµ0L
dµλL

(ξ),

and we want to show that ρ is bounded above uniformly for ξ ∈ ΩL. For any ξ ∈ ΩL \
Ω+
L—recalling Ω+

L = {ξ ∈ ΩL : N (ξ) = 0}, since µ0L(ξ) = 0,

ρ(ξ) =
µ0L(ξ)

µλL(ξ)
= 0.

While for any ξ ∈ Ω+
L , applying Theorem 2.2, for all L ≥ 4 we have

ρ(ξ) =
dµ0L
dµλL

(ξ) =
µ0L(ξ)

µλL(ξ)
=

1/ZL−2(1)

1/ZL(λ)
≤ C5(λ),

where C5(λ) > 0 is a suitable constant and only depends on λ. By Lemma 5.3 and (5.5), for any
given δ > 0, we have

lim
L→∞

∥µ0LP δ
2
L2 logL − µλL∥TV = 0. (5.10)

At this moment, we are ready to show that P∧,C
tδ

—the distribution of the censored dynamics
at tδ—is close to the stationary measure µλL. By the definition of C, we have

∥P∧,C
tδ

− µλL∥TV = ∥P∧,C
tδ/2

Ptδ−tδ/2 − µλL∥TV

≤ ∥P∧,C
tδ/2

Ptδ−tδ/2 − µ0LPtδ−tδ/2∥TV + ∥µ0LPtδ−tδ/2 − µλL∥TV

≤ ∥P∧,C
tδ/2

− µ0L∥TV + ∥µ0LPtδ−tδ/2 − µλL∥TV. (5.11)

Here the first inequality uses the triangle inequality. The second inequality is based on the fact
that ∥αPt − βPt∥TV ≤ ∥α − β∥TV for any two probability measures α, β on ΩL, and Pt is a
transition matrix on ΩL. The first term in (5.11) is not bigger than ϵ/2 by (5.9) for L sufficiently
large. The second term in (5.11) is smaller than or equal to ϵ/2 by (5.10) for L sufficiently large.

Recall that P∧
t is the distribution of σ∧t without censoring. By Proposition 5.1, for any t ≥ 0,

we have
∥P∧

t − µλL∥TV ≤ ∥P∧,C
t − µλL∥TV. (5.12)

Combining (5.11) and (5.12), we conclude the proof. □

Our next task is to provide an upper bound on the mixing time for the dynamics starting
from the minimal path.

Proposition 5.5. For any λ ∈ (1, 2), any ϵ > 0 and any δ > 0, if L is sufficiently large, we
have

TL,∨mix (ϵ) ≤
1 + δ

π2
L2 logL. (5.13)

The idea for the proof of Proposition 5.5 for λ ∈ (1, 2) is similar to Proposition 5.4:
(i) We first show that under P∨

s0(L)
with s0(L) := 10L16/9 logL which is the marginal

distribution of σ∨s0(L), with high probability σ∨s0(L) does not touch the x−axis in the
interval JM,L−MK for some M sufficiently large.

(ii) For the time interval [s0(L), s0(L)+ tδ/2), let (σ∨,Ct )s0(L)≤t<s0(L)+tδ/2 denote the dynam-
ics censoring those updates which can change the number of contact points.

(iii) By Remark 1.2 and Theorem 1.1, roughly speaking, the distribution of σ∨,Cs0(L)+tδ/2
is

close to µ0L in total variation distance. Then we repeat the (iii) step stated above
Proposition 5.4 to conclude the proof.
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Lemma 5.6. For any given ϵ > 0 and λ ∈ (1, 2), let M =M(λ, ϵ) be a positive integer, and

EL,M :=
{
ξ ∈ ΩL : ξx ≥ 1,∀x ∈ JM,L−MK

}
. (5.14)

For all L ≥ 2M , we have
P
[
σ∨s0 ∈ EL,M

]
≥ 1− ϵ/2. (5.15)

Proof. Let m and n be two positive integers, and n < m < L/2. Observe that in the
graphical construction, if we run the dynamics (σ∨t )t≥0 with the points (2n, 0) and (2m, 0) fixed
for all t ≥ 0, denoted as (σ∨t )t≥0 with σ∨t (2n) ≡ σ∨t (2m) ≡ 0 for all t ≥ 0, we have

∀t ≥ 0, σ∨t ≤ σ∨t . (5.16)

By symmetry, to give an upper bound on P[σ∨t (x) = 0], we only need to consider x ∈ J0, L/2K.
For all M ≤ x ≤ L/2 and x ∈ 2N, let x̄ := 2⌊x8/9/2⌋ and L̄ := 2⌊L8/9/2⌋. For all L sufficiently
large, by (5.4) we obtain

TL,λmix(L
−3/2) ≤ 18

π2
L2 logL. (5.17)

Therefore, the quantity s0 satisfies

T L̄,λmix

(
L̄−3/2

)
≤ s0.

Using (5.16), (5.17) and (3.8) respectively, for all t ≥ s0, we take 2n := x− x and 2m := x+ x
in (5.16) to obtain

P
[
σ∨t (x) = 0

]
≤ P

[
σ∨t (x) = 0

]
≤ µλ2x̄(ξx̄ = 0) + ∥P∨

t − µλ2x̄∥TV ≤ C6(λ)x
−4/3, (5.18)

where C6(λ) > 0 only depends on λ. In the second inequality, there is an abuse of notation—P∨
t

denotes the distribution of σ∨t starting with the minimal path ∨ of Ω2x̄. Therefore, due to
symmetry and (5.18), we obtain

L−M∑
x=M

P[σ∨s0(x) = 0] = 2

L/2∑
x=M

P[σ∨s0(x) = 0]

≤ 2C7(λ)M
−1/3.

(5.19)

Let C(λ, ϵ) > 0 be a constant such that the right-hand side is smaller than ϵ/2, if M ≥ C(λ, ϵ).
Applying Markov’s inequality and (5.19), we obtain

P
[
σ∨s0 /∈ EL,M

]
= P

[
L−M∑
x=M

1{σ∨
s0

(x)=0} ≥ 1

]
≤ ϵ/2. (5.20)

□

For the dynamics starting from ξ ∈ EL,M , we censor the updates that change the number of
the contact points until time tδ/2. Then we show that its distribution at time t3δ/4 is close to µλL
in total variation distance.

Lemma 5.7. Let ξ ∈ EL,M , and let (σξ,Ct )t≥0 be a censored dynamics with the censoring
scheme C : R+ → P(Θ) defined by

C(t) :=

{
GL if t ∈ [0, tδ/2),

∅ if t ∈ [tδ/2,∞).
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where GL is defined in (5.7). For any given ϵ > 0, for all L sufficiently large, we have

∥P ξ,Ct3δ/4 − µλL∥TV < ϵ/2, (5.21)

where we recall that tδ = (1 + δ)π−2L2 logL and P ξ,Ct denotes the marginal distribution of the
censored dynamics (σξ,Ct )t≥0 at time t.

With Lemma 5.7 at hand, we are ready to prove Proposition 5.5. Combining Lemma 5.6,
Lemma 5.7 and Proposition 5.1, we conclude the proof of Proposition 5.5, since s0 + t3δ/4 ≤ tδ.

Proof of Lemma 5.7. For ξ ∈ EL,M , set

ℓ(ξ) := sup
{
x ≤M : ξx = 0

}
,

r(ξ) := inf
{
x ≥ L−M : ξx = 0

}
.

(5.22)

Observe that the censored dynamics (σξ,Ct )0≤t<tδ/2 restricted in the intervals J0, ℓK, Jℓ, rK and
Jr, LK respectively are independent. Let the marginal distribution restricted in these three in-
tervals be denoted by P ξ,Ct,ℓ , P ξ,Ct,r−ℓ, P

ξ,C
t,L−r respectively. We refer to Figure 4 for illustration.

0 LM L − Mℓ r

y

x

1
2

1
2

× × ××

1
2

σξ,C
t

Figure 4. A graphical representation of the jump rates for the censored dynamics
(σξ,C

t )0≤t<tδ/2 starting from ξ ∈ EL,M . The red dashed corners are not available corners, labeled
with ×. To the left hand side of the green point (M, 0), the red point (ℓ, 0) is the first contact
point with the x-axis at time t = 0. Moreover, the corner at (ℓ, 0) is fixed for t ∈ [0, tδ/2).
Likewise, the same phenomenon holds for the green point (L − M, 0) and the red point (r, 0).
In the time interval [0, tδ/2), the censored dynamics (σξ,C

t )0≤t<tδ/2 does not touch the x−axis
in the interval Jℓ+ 1, r − 1K.

Let the censored dynamics restricted in the interval Jℓ, rK be denoted by (σ̃ξt )t<tδ/2 , whose
invariant probability measure is µ0r−ℓ defined in (1.2). By Theorem 1.1 and Remark 1.2, for given
δ > 0 and ϵ > 0, for all L sufficiently large, we have

∥P ξ,Ctδ/2,r−ℓ − µ0r−ℓ∥TV ≤ ϵ/4. (5.23)

Note that the upper bound in (5.23) does not depend on the value of (ℓ, r). Moreover, observe
that for any ξ′ ∈ ΩL, the product distribution P ξ,Ctδ/2,l ⊗ µ0r−ℓ ⊗ P ξ,Ctδ/2,L−r satisfies(

P ξ,Ctδ/2,ℓ ⊗ µ0r−ℓ ⊗ P ξ,Ctδ/2,L−r

)
(ξ′) ≤ 1

Zr−ℓ(0)
, (5.24)

while µλL(ξ
′) ≥ 1/ZL(λ) since λ ∈ (1, 2). Therefore, for all L > 2M and for any ξ′ ∈ ΩL, we have

dP ξ,Ctδ/2,ℓ ⊗ µ0r−ℓ ⊗ P ξ,Ctδ/2,L−r

dµλL
(ξ′) ≤ C8(λ)2

2M , (5.25)
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where the last inequality uses Theorem 2.2 and r − ℓ ≥ L − 2M , since ξ ∈ EL,M . Note that
the right-most hand side in (5.25) does not depend on the value of (ℓ, r), and the distribution of
σξ,Ctδ/2 is

P ξ,Ctδ/2 = P ξ,Ctδ/2,ℓ ⊗ P ξ,Ctδ/2,r−ℓ ⊗ P ξ,Ctδ/2,L−r, (5.26)

instead of P ξ,Ctδ/2,ℓ ⊗ µ0r−ℓ ⊗ P ξ,Ctδ/2,L−r. Due to (5.23), we repeat the same procedure in (5.11) to
obtain

∥P ξ,Ct3δ/4 − µλL∥ = ∥P ξ,Ctδ/2Pt3δ/4−tδ/2 − µλL∥

≤ ∥P ξ,Ctδ/2Pt3δ/4−tδ/2 − (P ξ,Ctδ/2,ℓ ⊗ µ0r−ℓ ⊗ P ξ,Ctδ/2,L−r)Pt3δ/4−tδ/2∥

+ ∥(P ξ,Ctδ/2,ℓ ⊗ µ0r−ℓ ⊗ P ξ,Ctδ/2,L−r)Pt3δ/4−tδ/2 − µλL∥.

(5.27)

Moreover, we have

∥P ξ,Ctδ/2Pt3δ/4−tδ/2 − (P ξ,Ctδ/2,ℓ ⊗ µ0r−ℓ ⊗ P ξ,Ctδ/2,L−r)Pt3δ/4−tδ/2∥

≤∥P ξ,Ctδ/2 − P ξ,Ctδ/2,ℓ ⊗ µ0r−ℓ ⊗ P ξ,Ctδ/2,L−r∥ = ∥P ξ,Ctδ/2,r−ℓ − µ0r−ℓ∥ ≤ ε/4
(5.28)

where we have used (5.26) in the equality and (5.23) in the last inequality. While for the last
term in (5.27), by (5.25) and Lemma 5.3, for all L sufficiently large we have

∥(P ξ,Ctδ/2,ℓ ⊗ µ0r−ℓ ⊗ P ξ,Ctδ/2,L−r)Pt3δ/4−tδ/2 − µλL∥ ≤ ε/4. (5.29)

Combining (5.28) with (5.29), we conclude the proof.
□

Theorem 1.3 is a combination of Proposition 3.1, Proposition 5.4, and Proposition 5.5.

2.A. Proof of Lemma 4.9.

We lift the maximal path ∧ up by a height L1/2(logL)2. To be precise, define ∧ := ∧ +m,
i.e. ∧x = ∧x +m for all x ∈ J0, LK, where m := 2⌈L1/2(logL)2/2⌉. The graphical construction
in Subsection 2.1, with Θ changed to be

Θ′ :=
{
(x, z) : x ∈ J1, L− 1K, z ∈ J1,m+ L/2− 1− |x− L/2|K, x+ z ∈ 2N+ 1

}
,

allows us to couple the three dynamics (σ∧,λt )t≥0, (σ⊼,λt )t≥0 and (σ⊼,0t )t≥0, starting from ∧, ⊼
and ⊼ respectively, with parameter λ, λ and 0 respectively. By the monotonicity of the starting
paths and the parameters λ in the dynamics, asserted in Proposition 2.1, we have

σ∧,λt ≤ σ∧,λt ,

σ∧,λt ≤ σ∧,0t .

Set
H(t) := max

x∈J0,LK
σ∧,0t (x).

Since H(t) ≥ H(t), it is enough to prove that

lim
L→∞

P
[
∃t ∈ [tδ/2, tδ] : H(t) ≥ 2L1/2(logL)2

]
= 0, (2.A.1)

where we recall that tδ = (1 + δ) 1
π2L

2 logL. We obtain such an upper bound in (2.A.1) by
comparing (σ∧,0t )t≥0 with the symmetric simple exclusion process.
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2.A.1. Simple exclusion process. Define

SL :=
{
ζ ∈ ZL+1 : ζ0 = ζL = m; |ξx+1 − ξx| = 1,∀x ∈ J0, L− 1K

}
, (2.A.2)

and
S+
L :=

{
ζ ∈ SL : ζx ≥ 1, ∀x ∈ J0, LK

}
.

We define a Markov chain on SL by specifying its generator L. The generator L is defined by its
action on the functions RSL ,

(Lf)(ζ) :=
1

2

L−1∑
x=1

(
f(ζx)− f(ζ)

)
, (2.A.3)

where ζx ∈ SL is defined by

ζxy :=

{
ζy if y ̸= x,

ζx−1 + ζx+1 − ζx if y = x.

When ζx−1 = ζx+1, ζ displays a local extremum at x and we obtain ζx by flipping the corner of ξ
at the coordinate x. Let UL denote the uniform probability measure on SL. We can see that this
Markov chain is reversible with respect to the uniform measure UL. Therefore, UL is the invariant
probability measure for this Markov chain. The Markov chain starting with the maximal path
∧ is denoted by (η∧t )t≥0. Likewise, let (ηUL

t )t≥0 denote the Markov chain with generator L and
starting path chosen by sampling UL. There is a one-one correspondence between this Markov
chain and the symmetric simple exclusion process, for which we refer to [Lac16b, Section 2.3] for
more information. Under the measure UL, typical path ζ ∈ SL does not touch the x-axis, which
is the following lemma.

Lemma 2.A.1. For all L sufficiently large, we have

UL(SL \ S+
L ) ≤ e−

1
2
(logL)2 . (2.A.4)

Proof. Let P be the law of the nearest-neighbor symmetric simple random walk on Z, and
(Si)i∈N be its trajectory with S0 = 0. Since any trajectory of this simple random walk has the
same mass, we have

UL(SL \ S+
L ) = P

[
∃i ∈ J0, LK : Si +m ≤ 0|SL = 0

]
≤ L

1
2P
[

min
i∈J0,LK

Si ≤ −m,SL = 0
]

≤ 2L
1
2P[SL ≤ −m]

≤ e−
1
2
(logL)2 , (2.A.5)

which vanishes as L tends to infinity. The first inequality uses P[SL = 0] ≥ L−1/2, for all L
sufficiently large. The second inequality uses

P
[

min
i∈J0,LK

Si ≤ −m,SL = 0
]
≤ 2P

[
SL ≤ −m

]
.

In the last inequality, we use the inequality,
√
2πnn+

1
2 e−n ≤ n! ≤ enn+

1
2 e−n for all n ≥ 1, to

obtain

P[SL ≤ −m] ≤ (L−m+ 1)

(
L

L+m
2

)
2−L ≤ (L−m+ 1)e−(logL)2 .

□
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2.A.2. Compare the polymer pinning dynamics to simple exclusion process. There
is a graphical construction similar to that mentioned at the beginning of Appendix 2.A, allowing
to couple the three dynamics (σ∧,0t )t≥0, (η∧t )t≥0 and (ηUL

t )t≥0 such that for all t ≥ 0,

σ∧,0t ≥ η∧t ≥ ηUL
t . (2.A.6)

Let P∧,−
t (·) := P(η∧t = ·) and P∧,0

t (·) := P(σ∧,0t = ·). Intuitively, the distribution of σ∧,0t is close
to that of η∧t for all t ≥ 0.

Lemma 2.A.2. For any given ϵ > 0 and all L sufficiently large, we have

sup
0≤t≤tδ

∥P∧,0
t − P∧,−

t ∥TV ≤ ϵ. (2.A.7)

Proof. By Proposition 4.1 and the monotonicity in (2.A.6), we obtain

sup
0≤t≤tδ

∥P∧,0
t − P∧,−

t ∥TV ≤ P
[
∃t ∈ [0, tδ] : σ

⊼,0
t ̸= η⊼t

]
≤ P

[
∃t ∈ [0, tδ] : min

x∈J0,LK
η∧t (x) ≤ 0

]
≤ P

[
∃t ∈ [0, tδ] : min

x∈J0,LK
ηUL
t (x) ≤ 0

]
. (2.A.8)

The second inequality is based on the fact that in the coupling if σ∧,0t ̸= η∧t , there must exist
x ∈ J0, LK satisfying η∧s (x) = 0 for some s ∈ [0, t]. The third inequality uses the monotonicity
of the dynamics, i.e. η∧t ≥ ηUL

t for all t ≥ 0. The last term in (2.A.8) vanishes as L tends
to infinity, which follows exactly as that in (4.33) of Lemma 4.8, using occupation time (4.30),
strong Markov property and Lemma 2.A.1. □

Furthermore, by [Lac16b, Theorem 2.4], for any given ϵ > 0 and t ≥ tδ/2, if L is sufficiently
large, we have

∥P∧,−
t − UL∥TV ≤ ϵ. (2.A.9)

Then we use the information of UL to give an upper bound for the highest point of σ∧,0t .

Proof of Lemma 4.9. By triangle inequality, Lemma 2.A.2 and (2.A.9), for t ∈ [tδ/2, tδ],
if L is sufficiently large, we have

∥P∧,0
t − UL∥TV ≤ 2ϵ. (2.A.10)

By (2.A.10), for every t ∈ [tδ/2, tδ] and L sufficiently large, we obtain

P
[
H(t) ≥ 2L

1
2 (logL)2

]
≤ UL

(
sup

x∈J0,LK
ζx ≥ 2L

1
2 (logL)2, ζ ∈ SL

)
+ ∥P∧,0

t − UL∥TV ≤ 3ϵ,

where the first term in the right hand side vanishes as L tends to infinity, whose proof is the
same as Lemma 2.A.1. Since ϵ > 0 is arbitrary, we finish the proof. □

2.B. Spin system.

To deduce Proposition 5.1 from [PW13, Theorem 1.1], we construct a monotone system
⟨Ω∗

L, S, VL, µ
∗
L⟩ which is the same as the Glauber dynamics of the polymer pinning model.

For (x, z) ∈ N2, a square with four vertices {(x − 1, z), (x + 1, z), (x, z − 1), (x, z + 1)}
is denoted as Sq(x, z). Recalling Θ defined in (2.1), let S := {⊕,⊖} denote the spins, and
VL := {Sq(x, z) : ∀(x, z) ∈ Θ} denote the set of all sites, which consists of all green or white
squares shown Figure 5. Each square of VL is endowed with ⊕ or ⊖. Moreover, we give a
natural order for the spins, say, ⊖ ≤ ⊕. For any given ξ ∈ ΩL, every square Sq(x, z) lying under
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the path ξ is endowed with ⊕, while every square Sq(x, z) lying above ξ is endowed with ⊖.
This spin configuration is denoted as ξ∗. For ξ, ξ′ ∈ ΩL, ξ ≤ ξ′ if and only if ξ∗ ≤ ξ′∗. Let
Ω∗
L := {ξ∗, ξ ∈ ΩL} and µ∗L(ξ

∗) := µ(ξ).

⊖

⊖

⊖

⊖

⊖

⊖

⊖

⊖

⊖

⊖

⊕ ⊕ ⊕ ⊖ ⊕

⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊖

⊖

⊖

⊖

⊖

⊖

⊖

⊖

0 2

2

4

4

6

6

8 10 12

ξ

x

y

Figure 5. An example shows the equivalence between the polymer pinning model and the
spin system with L = 12. The blue path ξ is an element of ΩL. This configuration in the spin
system is denoted as ξ∗, and its probability measure is µ(ξ). The corner at x = 8 of thick blue
path ξ flips up with rate 1/(1 + λ) to the dashed blue corner, while the spin ⊖ at the green
square centered at (8, 1) flips to ⊕ with rate 1/(1 + λ). The corner at x = 5 of thick blue path
ξ flips down with rate 1/2 to the dashed blue corner, while the spin ⊕ at the white square
centered at (5, 2) flips to ⊖ with rate 1/2. Note that not all the correspondence between the
flipping of the corners of ξ and that of the spins of ξ∗ are shown in the picture.

For convenience of describing the Glauber dynamics of spin system, we introduce two fixed
boundary conditions. We assign a negative spin ⊖ to each square Sq(x, z) where{

(x, z) : x ∈ J1, L/2− 1K ∪ JL/2 + 1, L− 1K, z = L/2 + 1− |x− L/2|
}
.

These are the blue squares shown in Figure 5. In addition, we also introduce a positive boundary
condition. A triangle with three vertices {(x− 1, z), (x+ 1, z), (x, z + 1)} is denoted as Tr(x, z)
for (x, z) ∈ N2. We assign a positive spin ⊕ to each triangle Tr(x, 0) for all x ∈ J1, L− 1K \ 2N.
These are the red triangles shown in Figure 5. We say that two spins are neighbors if the squares
or triangles on which they lie share an edge. We use the same exponential clocks and uniform
coins T ↑, T ↓, U↑, and U↓ define in Subsection 2.1 to describe the dynamics of the spin system.

Given T ↑, T ↓, U↑ and U↓, we construct, in a deterministic way, (σξ
∗

t )t≥0 the Glauber dy-
namics of the spin system starting with ξ∗ with parameter λ. The trajectory (σξ

∗

t )t≥0 is càdlàg
with σξ

∗

0 = ξ∗ and is constant in the intervals, where the clock processes are silent.
When the clock process T ↑

(x,z) rings at time t = T ↑
(x,z)(n) for n ≥ 1, we update the configura-

tion σξ
∗

t− as follows:
• if the spin in the square Sq(x, z) is ⊖, and has two neighbors with ⊕ spins, and z = 1,

and U↑
(x,z)(n) ≤

1
1+λ , we let the spin in the square Sq(x, z) change to ⊕ at time t, and

the other spins remain unchanged;
• if the spin in the square Sq(x, z) is ⊖, and has two neighbors with ⊕ spins, and z ≥ 2,

and U↑
(x,z)(n) ≤ 1/2, we let the spin in the square Sq(x, z) change to ⊕.
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If these two conditions aforementioned are not satisfied, we do nothing.
When the clock process T ↓

(x,z) rings at time t = T ↓
(x,z)(n) for n ≥ 1, we update the configura-

tion σξ
∗

t− as follows:
• if the spin in the square Sq(x, z) is ⊕, and has two neighbors with ⊖ spins, and z = 1,

and U↓
(x,z)(n) ≤

λ
1+λ , we let the spin in the square Sq(x, z) change to ⊖ at time t, and

the other spins remain unchanged;
• if the spin in the square Sq(x, z) is ⊕, and has two neighbors with ⊖ spins, and z ≥ 2,

and U↓
(x,z)(n) ≤ 1/2, we let the spin in the square Sq(x, z) change to ⊖ at time t, and

the other spins remain unchanged.
If these two conditions aforementioned are not satisfied, we do nothing.

We can see that ⟨Ω∗, S, V, µ∗⟩ is a monotone system in the sense of [PW13, Section 1.1],
whose Glauber dynamics is the same as that of the polymer pinning model.



CHAPTER 3

Metastability for expanding bubbles on a sticky substrate

Abstract: In this chapter, we study the dynamical behavior of a one dimensional interface
interacting with a sticky impenetrable substrate or wall. The interface is subject to two effects
going in opposite directions. Contact between the interface and the substrate are given an
energetic bonus while an external force with constant intensity pulls the interface away from
the wall. Our interface is modeled by the graph of a one-dimensional nearest-neighbor path
on Z+, starting at 0 and ending at 0 after 2N steps, the wall corresponding to level-zero the
horizontal axis. At equilibrium each path ξ = (ξx)

2N
x=0, is given a probability proportional to

λH(ξ) exp( σNA(ξ)), where H(ξ) := #{x : ξx = 0} and A(ξ) is the area enclosed between the
path ξ and the x-axis. We then consider the classical heat-bath dynamics which equilibrates the
value of each ξx at a constant rate via corner-flip.

Investigating the statics of the model, we derive the full phase diagram in λ and σ of this
model, and identify the critical line which separates a localized phase where the pinning force
sticks the interface to the wall and a delocalized one, for which the external force stabilizes ξ
around a deterministic shape at a macroscopic distance of the wall. On the dynamical side,
we identify a second critical line, which separates a rapidly mixing phase (for which the system
mixes in polynomial time) to a slow phase where the mixing time grows exponentially. In this
slowly mixing regime we obtain a sharp estimate of the mixing time on the log scale, and provide
evidences of a metastable behavior.

1. Introduction

The present manuscript investigates the dynamical behavior for a discrete interface model in
the vicinity of an impenetrable substrate or wall. We assume that the interface is subject to:

(A) An interaction with the wall, modelized by an energetic reward or penalty for each
contact.

(B) An homogeneous external force field, which drives away the interface from the wall
which translates into adding a potential energy proportional to the interface heights.

wall

interface

Localization/Delocalization transition

wall

interface

Figure 1. The typical behavior of the interface changes when the external force field passes a
certain threshold from a localized phase to a delocalized phase.

We want to understand in depth how these two competing effects can affect the mixing properties
of the system. We consider the simplest possible setup. Our interface is modeled by the graph

71
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of a one dimensional simple random walk, with a configuration space given by

ΩN :=
{
ξ ∈ Z2N+1

+ : ξ0 = ξ2N = 0 ; ∀x ∈ J1, 2NK, |ξx − ξx−1| = 1
}
.

We are going to consider a reversible Markov chain (ηt)t ≥ 0 on ΩN with transition rules which
reflect the two driving forces described in (A) and (B) (see (2.5) below for an explicit description
of the Markov chain and (2.2) for the corresponding reversible probability).

The study of effective interface models is a large field of study both in mathematics and
physics. The problem of wetting of a random walk (which is the study of effect (A) alone) dates
back to the seminal paper of [Fis84]. Several variants and generalizations of the model have
been considered since (with a particular interest for the disordered model see [Gia11, Gia07] for
a review). Interest in the dynamics associated to this model and its mixing properties came later
[CMT08, CLM+12, Yan19].

Interfaces subjected to an external force (effect (B)), on the other hand, have been studied in
an infinite volume, both because it is a natural model for growth and because of its connection
with the asymmetric simple exclusion process, mostly in the infinite volume setup (see e.g.
[Ros81, Rez91, DMPS89, Gä87] for early references dealing with hydrodynamics with total,
partial and weak asymmetry). The model on the segment is slightly different, since in particular
the boundary condition makes the dynamics reversible, and its static and dynamical properties
were investigated [BBHM05, Lab18, LL19, LL20, LP16] (see also [GNS20, Sch19] for variants
with open boundaries and random environment).

As can be seen in the above references, under the effect of (A) or (B) alone, the system
mixes fast. By this we mean that the mixing time (whose definition is recalled in Section 2
below) grows only like a power of the size of the system.

In the chapter, we show that this state of fact changes dramatically when (A) and (B) are
combined, at least for some choices of parameters. To take full advantage of the effect (A) or
(B), the interface must adopt two very different strategies. To get the best of the energetic
bonus awarded for contacts with the wall, the interface wants to locally optimize the contact
fraction which implies staying very close to the wall (see [Gia07, Theorem 2.4] and Figure 3). On
the other hand the pulling force, when considered alone, makes the interface stabilize around a
macroscopic profile which optimizes the competition between the energetic reward given by the
pulling force field and the large deviation cost for the one dimensional random walk (see [Lab18,
Theorem 4] and Figure 3). When both the attraction to the wall and the external field are turned
on, there is no efficient way to combine the two above strategies. As a result the equilibrium
state of the system is simply determined by comparing which of the two effects is dominant. In
particular we have an abrupt phase transition when the external field grows, from a localized
phase where the interface sticks to the wall, to a delocalized one, where the interface is repelled
at a macroscopic distance away from it. As a first result in our chapter, we give a detailed
description of the equilibrium phase diagram of the system, which includes the identification of
the free-energy and a description of the interface behavior on the critical line.

The more important contribution is the study of the dynamics. We establish that depending
on the value of the parameters which tune the intensity of effects (A) and (B) the system either
mixes in polynomial time or takes an exponential time to reach its equilibrium state. We also
identify the critical line which separates the slow and fast mixing phases, which does not coincide
with the line delimiting the static phase transition. We will show that when the wall is attractive
and the external force is sufficiently large, then the mixing time becomes exponentially large in
the size of the system. Moreover we identify the critical line which separates the fast-mixing
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regime from the slow-mixing regime, which differs from the one appearing on the equilibrium
phase diagram.

The slow mixing phase displays a metastable behavior. In that regime, the two strategies
which maximize the benefits of contact with the wall and the external force field respectively
correspond heuristically two distinct local equilibrium states for the dynamics. The mixing time
then corresponds to the typical time needed to travel from the thermodynamically less favorable
state (corresponding the the less beneficial strategy) to the point of equilibrium. We prove that
properly rescaled, the traveling time for leaving the thermodynamically unstable local equilibrium
rescales to an exponential random variable.

This metastable picture is present in many systems of statistical mechanics and has been
the object of an extensive mathematical attention in the past two decades (see [BL15, BDH16]
and references therein). In the specific realm of pinning model, our picture is reminiscent of
the Cassie-Baxter/Wenzel transition observed for wetting of irregular substrate (see [GCMC12]
and references therein for a review and studies of the phenomenon and [DCDH11, LT15] for the
mathematical treatement of a simplified model accounting for it).

2. Model and results

2.1. The setup.
The static model. Let us now introduce a simple statistical mechanics model which combines

the substrate interaction and the external force-field effect. Consider the set of nonnegative
integer-valued one-dimensional nearest-neighbor paths which start at 0 and end at 0 after 2N
steps, that is

ΩN :=
{
ξ ∈ Z2N+1

+ : ξ0 = ξ2N = 0 ; ∀x ∈ J1, 2NK, |ξx − ξx−1| = 1
}
, (2.1)

where N ∈ N, and Ja, bK := [a, b] ∩ Z for a, b ∈ R with a < b. For ξ ∈ ΩN , we denote by H and
A respectively the number of zeros and the (algebraic) area between the path and the horizontal
axis

H(ξ) :=

2N−1∑
x=1

1{ξx=0} and A(ξ) :=

2N∑
x=1

ξx.

We define a probability measure on ΩN using a Gibbs weight constructed from an Hamiltonian
which is the sum of two terms, one proportional to the area and another one proportional to the
number of contacts. We rescale the area by a factor N so that these two effects play on the same
scale. Given λ ≥ 0 and σ ∈ R, we define µλ,σN on ΩN by

µλ,σN (ξ) :=
2−2NλH(ξ) exp

(
σ
NA(ξ)

)
ZN (λ, σ)

(2.2)

where ZN (λ, σ) is the partition function, given by

ZN (λ, σ) := 2−2N
∑
ξ′∈ΩN

λH(ξ′) exp
(
σ
NA(ξ

′)
)
. (2.3)

By convention, 00 := 1 and 0k := 0 for any positive integer k ≥ 1. The factor 2−2N is irrelevant
for the definition of µλ,σN but is convenient for the partition function. When it is clear from the
context, we omit the indices λ and σ in µλ,σN . The graph of ξ depicts the spatial configuration of
an interface ( see Figure 1).
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The dynamics. The object of this chapter is to investigate the relaxation property of the
Glauber dynamics associated with the equilibrium measure µλ,σN . This is a continuous-time
reversible Markov chain on ΩN , which proceeds by flipping the corners in the path ξ ∈ ΩN . For
ξ ∈ ΩN and x ∈ J1, 2N − 1K, we define ξx by

ξxy :=


ξy if y ̸= x,

(ξx−1 + ξx+1)− ξx if y = x and ξx−1 = ξx+1 ≥ 1 or ξx−1 ̸= ξx+1,

ξx if y = x and ξx−1 = ξx+1 = 0.

(2.4)

In other words, if ξx−1 = ξx+1, ξ presents a local extremum at x and ξx is obtained by flipping
the corner at the coordinate x provided that ξx ∈ ΩN (see Figure 2). The rates at which each
corner is flipped is specified by the following rates

rN (ξ, ξ
x) :=



exp( 2σ
N

)

1+exp( 2σ
N

)
ifξx−1 = ξx+1 > ξx ≥ 1,

1
1+exp( 2σ

N
)

if ξx > ξx−1 = ξx+1 > 1,

λ
λ+exp( 2σ

N
)

if (ξx−1, ξx, ξx+1) = (1, 2, 1),

exp( 2σ
N

)

λ+exp( 2σ
N

)
if(ξx−1, ξx, ξx+1) = (1, 0, 1),

0 if ξx−1 ̸= ξx+1 or ξx−1 = ξx+1 = 0.

(2.5)

The other transition rates rN (ξ, ξ′) when ξ is not one of the ξxs are equal to zero. The generator
LN of the Markov chain is thus given (for f : ΩN → R) by

(LNf)(ξ) :=
∑
ξ′∈ΩN

rN (ξ, ξ
′)
[
f(ξ′)− f(ξ)

]
=

2N−1∑
x=1

rN (ξ, ξ
x)
[
f(ξx)− f(ξ)

]
. (2.6)

0

2N

exp( 2σ
N )

1 + exp( 2σ
N )

×

λ

λ + exp( 2σ
N )

1

1 + exp( 2σ
N )

ξexp( 2σ
N )

λ + exp( 2σ
N )

y

x

Figure 2. A graphical representation of the jump rates for the system. A transition of the
chain corresponds to flipping a corner, whose rate is chosen such that the chain is reversible
with respect to µλ,σ

N . The red dashed corner is not available, due to the nonnegative restriction
of the state space ΩN . Note that not all of the possible transitions are shown in the figure.

An interpretation of LN is that for each x, the coordinate ξx is resampled with respect to
the conditional equilibrium measure µN (· | (ξy)y ̸=x). Indeed the generator can be rewritten as

(LNf)(ξ) =
2N−1∑
x=1

[
Qx(f)(ξ)− f(ξ)

]
,

where Qx is the following operator

Qx(f)(ξ) := µN (f(ξ) | (ξy)y ̸=x) .
Here and in what follows ν(f) is used to denote the expectation of f with respect to ν and
similar convention is used for conditional expectation. The chain is irreducible, and since the
rates rN satisfy the detailed balance condition for the measure µN , it is also reversible. We are



2. MODEL AND RESULTS 75

interested in the speed relaxation to equilibrium of the above dynamics which is encoded by the
spectral gap of the generator LN . In our context the spectral gap can be defined as the minimal
positive eigenvalue of −LN . It can be characterized using the Dirichlet form associated with the
dynamic defined by

E(f) := −⟨f,LNf⟩µN =
2N−1∑
x=1

µN
(
(Qxf − f)2

)
,

where ⟨f, g⟩µN :=
∑

ξ∈ΩN
µN (ξ)f(ξ)g(ξ) denotes the usual inner-product in L2(µN ). Moreover,

the spectral gap, denoted by gapN (λ, σ), is the minimal positive eigenvalue of −LN and the
relaxation time is its inverse. That is

TNrel(λ, σ) := sup
f : VarµN (f)>0

VarµN (f)

E(f)
= gap−1

N (λ, σ), (2.7)

where VarµN (f) := ⟨f, f⟩µN − ⟨f, 1⟩2µN .

2.2. Equilibrium results. While our main result concerns the dynamics, our first task
is to understand the properties of the model at equilibrium, and in particular the asymptotic
behavior of the partition function. Our result is obtained via comparison with two previously
studied models.

The Random walk pinning model. The case σ = 0 is very well understood, since in that case
the model is the classical random walk pinning model in [Fis84]. We refer to [Gia07] (see also
[CMT08, Yan19] for studies of the dynamics). The model undergoes a phase transition at λ = 2:
when λ < 2, our random interfaces typically have a finite number of contact points with the
x−axis and typical heights are of order

√
N while when λ > 2, we have a positive density of

contact points with the x−axis and the largest height is of order logN .

This transition is encoded in the free energy of the model defined by

F (λ) := lim
N→∞

1

2N
logZN (λ, 0).

From [Gia07, Proposition 1.1] the free energy can be computed explicitly and we have (see [LT15,
Equation (1.5)]),

F (λ) = log

(
λ

2
√
λ− 1

)
1{λ>2}. (2.8)

Furthermore we have the following, more detailed asymptotics for the partition function (cf.
[Gia07, Theorem 2.2],

ZN (λ, 0) =


(1 + o(1))CλN

−3/2 if λ ∈ [0, 2),

(1 + o(1))C2N
−1/2 if λ = 2,

(1 + o(1))Cλe
2NF (λ) if λ > 2.

(2.9)

Our aim is to derive similar precise asymptotics when σ > 0.
The weakly asymmetric simple exclusion process on the segment. Another case for which

details on the partition function have been obtained is that when λ = 1, σ > 0, and no half-
space constraint is given (meaning that we allow for ξx < 0). In that case the model corresponds
to the equilibrium height profile of the weakly asymmetric simple exclusion process (or WASEP)
on the line segment J1, 2NK with N particles. Its equilibrium properties have been investigated
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in details in [Lab18, Section 2] (also with the objective of studying the dynamics) with some
attention given to the asymptotic behavior the corresponding partition function, namely

Z̃N (σ) := 2−2N
∑
ξ∈Ω̃N

exp
(
σ
NA(ξ)

)
, (2.10)

where
Ω̃N :=

{
ξ ∈ Z2N+1 : ξ0 = ξ2N = 0 ; ∀x ∈ J1, 2NK, |ξx − ξx−1| = 1

}
. (2.11)

In particular by [Lab18, Proposition 3] the limit

lim
N→∞

1

2N
log Z̃N (σ) := G(σ),

exists and is given by

G(σ) =

∫ 1

0
L (σ(1− 2x)) dx where L(x) := log coshx. (2.12)

Furthermore we have (from [Lab18, Lemma 11] in the case k = 1, α = 1, see also (3.7)-(3.9)
below)

Z̃N (σ) = (1 + o(1))CσN
−1/2e2NG(σ). (2.13)

The hybrid model. In the present chapter, we identify the free energy when both pinning and
area tilt are present, and identify (up to a constant) the right order asymptotic.

Proposition 2.1. We have for any λ ≥ 0 and σ ≥ 0

lim
N→∞

1

2N
logZN (λ, σ) = F (λ) ∨G(σ). (2.14)

More precisely there exists a constant C1(λ, σ) > 0 such that:
(1) If G(σ) > F (λ), then for all N ≥ 1 we have

1

C1(λ, σ)
≤

√
NZN (λ, σ)

exp (2NG(σ))
≤ C1(λ, σ); (2.15)

(2) If G(σ) ≤ F (λ) and λ > 2, then for all N ≥ 1 we have
1

C1(λ, σ)
≤ ZN (λ, σ)

exp (2NF (λ))
≤ C1(λ, σ). (2.16)

The above result confirms that the two effect of area tilt and pinning do not combine and
that only the stronger of the two (which is determined by the comparison of F (λ) and G(σ))
prevails. In the case of a tie between F (λ) and G(σ), the estimates (2.15)-(2.16) entails that the
pinning has a stronger effect. This is illustrated in Theorem 2.4 below.

Remark 2.2. In the result above, we do not identify the asymptotic equivalent of the partition
function in (2.15)-(2.16) and leave unmatching constants for the upper and lower bounds. This
is mostly to avoid lengthier computation and because the estimates(2.15)-(2.16) are sufficient to
prove our results about the dynamics.

Remark 2.3. We excluded the case σ < 0 from the analysis. Little efforts would be necessary
to show that we have in that case also

lim
N→∞

1

2N
logZN (λ, σ) = F (λ), (2.17)

and that (2.16) also holds. The case λ < 2 and σ < 0 should correspond to a different regime
where

−C1(λ, σ)N
1/3 ≤ logZN (λ, σ) ≤ − 1

C1(λ, σ)
N1/3. (2.18)
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This is reminiscent of the behavior observe in [FS05] for a Brownian motion in presence of a
curved barrier (see also references therein for numerous occurrences of N1/3 fluctuation). This
is in any case out of the focus of this chapter.

The information we gathered about the partition function allows for a detailed description the
typical behavior of ξ under µλ,σN . Let us define

Mσ(u) :=

∫ u

0
tanh(σ(1− x))dx =

1

σ
log

(
cosh(σ)

cosh(σ(1− u))

)
. (2.19)

0 2N

C logN

CN

Figure 3. The macroscopic shape of the substrate in equilibrium when F (λ) ≥ G(σ) (at
the top) and F (λ) < G(σ) (at the bottom). The dotted line illustrates the macroscopic shape,
which is the scaling limit when N → ∞ (The dotted line in the top figure coincides with the
x−axis.).

Theorem 2.4. For λ ≥ 0, σ > 0, we have
1. if G(σ) > F (λ), then for every ε > 0 there exists δ > 0 such that for all N sufficiently

large,

µN

(
sup
u∈[0,2]

∣∣∣∣ 1N ξ⌈uN⌉ −Mσ(u)

∣∣∣∣ > ε

)
≤ e−δN ; (2.20)

2. if G(σ) < F (λ), then for every ε > 0 there exists δ > 0 such that for all N sufficiently
large,

µN

(
sup

x∈J0,2NK
ξx > εN

)
≤ e−δN ; (2.21)

3. if G(σ) = F (λ), then for every ε > 0 and all N sufficiently large,

1

C
√
N

≤ µN

(
sup

x∈J0,2NK
ξx > εN

)
≤ C√

N
, (2.22)

and furthermore there exists δ > 0 such that

µN

(
sup

x∈J0,2NK
ξx > εN and sup

u∈[0,2]

∣∣∣∣ 1N ξ⌈uN⌉ −Mσ(u)

∣∣∣∣ > ε

)
≤ e−δN . (2.23)

Remark 2.5. Note that the corresponding shape result in the case of pure pinning (σ = 0) can
be deduced from [Gia07, Chapter 2] while that for WASEP interfaces (corresponding to (2.10))
can be extracted from the results in [Lab18].
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(log λ)-axis

σ-axis
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3

log 2 4 6 8 10 12 14

f(λ, σ) = F (λ)

f(λ, σ) = G(σ)

f(λ, σ) = 0

F (λ) = G(σ) and λ > 2

λ = 2 and σ ≤ 0

λ ∈ [0, 2] and σ = 0

Figure 4. The statics phase diagram for the free energy f(λ, σ): the red curve is F (λ) = G(σ)
and λ > 2, the black line is λ = 2 and σ ≤ 0, and the blue line is λ ∈ [0, 2] and σ = 0.

Remark 2.6. Looking at (2.14) we see that the free energy of our model defined by

f(λ, σ) := lim
N→∞

1

2N
logZN (λ, σ), (2.24)

is real-analytic in λ and σ, except on the curve {(λ, σ) : λ ≥ 2, F (λ) = G(λ)}, on the half line
line {(λ, σ) : λ = 2, σ ≤ 0} and the segment {(λ, σ) : λ ∈ [0, 2], σ = 0} (see Figure 4). The
partial derivatives of f(λ, σ) (corresponding to the asymptotic contact fraction and rescaled area
respectively) are discontinuous across the line, indicating that the corresponding phase transition
is of first order.

(log λ)-axis

σ-axis

0

1

2

3

log 2 2 4 6 8 10 12 14

F (λ) = G(σ)

E(λ, σ) = 0

The rapidly mixing phase
(localized and single well)

f(λ, σ) = F (λ)

The slow mixing phase
(localized and double wells)

f(λ, σ) = F (λ)

The slow mixing phase
(delocalized and double wells)

f(λ, σ) = G(σ)

Figure 5. The dynamical phase diagram in the regime λ > 2 and σ > 0: The line F (λ) = G(σ)
separates the localized phase from the delocalized phase, while the line E(λ, σ) = 0 separates
the rapidly mixing phase from the slow mixing phase.
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2.3. Dynamics results. As the main result for our chapter we manage to identify two
regimes for the dynamics, one where the system relaxes in polynomial time and one where the
relaxation time grows exponentially with the size of the system. To state our result, we need to
introduce a new quantity. We define the activation energy of the system by

E(λ, σ) = G(σ) ∧ F (λ)− inf
β∈[0,1]

(βG(βσ) + (1− β)F (λ)) . (2.25)

Note that E(λ, σ) ≥ 0 and that E(λ, σ) > 0 if and only if the equation

G(βσ) + σβG′(βσ)− F (λ) = 0 (2.26)

admits a solution in (0, 1). This condition is equivalent to G(σ) + σG′(σ) > F (λ) > 0.
The main result. We show that the system relaxation to equilibrium is “fast”, that is, poly-

nomial in N when E(λ, σ) = 0 while it is exponentially slow when E(λ, σ) > 0.

Theorem 2.7. For all λ > 2 and all σ > 0, we have

lim
N→∞

1

2N
log TNrel(λ, σ) = E(λ, σ). (2.27)

When E(λ, σ) = 0, there exist constants C(λ, σ) > 0 and C(λ) > 0 such that for all N ≥ 1,

C(λ, σ)−1N ≤ TNrel(λ, σ) ≤ C(λ, σ)NC(λ). (2.28)

When E(λ, σ) > 0, there exists constants C(λ, σ) > 0 and C ′(λ, σ) > 0 such that

C ′(λ, σ)−1N−2 ≤ TNrel(λ, σ)e
−2NE(λ,σ) ≤ C ′(λ, σ)NC(λ,σ).

The curve {(λ, σ) : σ > 0 , G(σ) + σG′(σ) = F (λ)} delimits a second phase transition (the
first transition being the wetting transition materialized by the curve F (λ) = G(σ) see Figure
5) from a slow mixing regime to a fast mixing regime. This transition is not visible in the phase
diagram of the static model and appears when considering the dynamics.

Mixing time. For the sake of completeness, let us mention how our result translates for the
mixing time of the Markov chain (see [LP17] for a full review of the topic). We let (ηξt )t≥0 denote
the Markov chain with generator LN (2.6) starting with initial condition ξ ∈ ΩN , and let P ξt
denote its marginal distribution at time t. For all ϵ ∈ (0, 1), the ϵ−mixing time for the dynamics
is

TN,λ,σmix (ϵ) := inf

{
t ≥ 0 : sup

ξ∈ΩN

∥P ξt − µN∥TV ≤ ϵ

}
, (2.29)

where ∥π1 − π2∥TV := 1
2

∑
ξ∈ΩN

|π1(ξ) − π2(ξ)| denotes the total variation distance. By [LP17,
Lemma 20.11, Theorem 12.3], the mixing time can be compared to the relaxation time as follows

TNrel(λ, σ) log
1

2ϵ
≤ TN,λ,σmix (ϵ) ≤ TNrel(λ, σ) log

1

εµ∗N
, (2.30)

where µ∗N := minξ∈ΩN
µN (ξ). It is almost immediate to check that in our case logµ∗N is of order

N (with a prefactor depending on λ and σ). Thus Theorem 2.7 remains essentially if one replaces
TNrel(λ, σ) by TN,λ,σmix (ϵ).

A first heuristic. Let us try to give a first explanation for the slower relaxation time when
E(λ, σ) > 0 (additional elements will be brought in the course of the proof see the discussion
in Section 4.1). In that case, the state space displays two distinct “wells of potential” for the
effective energy functional

V : β 7→ −βG(βσ)− (1− β)F (λ).

The parameter β ∈ [0, 1] above corresponds to the fraction of the polymer length which is
unpinned and the functional corresponds to the contribution to the partition function (on the
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exponential scale) of the polymer configurations which are macroscopically unpinned on a fraction
β of their length. The idea is that the unpinned fraction should look like a stochastic diffusion
on the segment, with a potential 2NV (·).

The time e2NE(λ,σ) corresponds to the time required for such a diffusion to overcome the
energy barrier between the two local mimina of V (β) (at 0 and 1 see Figure 6).

V

β-axis1
0

(a) G(σ) + σG′(σ) ≤ F (λ)
where E(λ, σ) = 0;

V

β-axis
0

1

(b) G(σ) + σG′(σ) > F (λ)
and F (λ) ≥ G(σ) where E(λ, σ) > 0;

V

β-axis
0

1

(c) G(σ) > F (λ)
where E(λ, σ) > 0.

Figure 6. The shapes of the functional V (β) := −βG(βσ)− (1−β)F (λ) for three phases: (a)
G(σ) + σG′(σ) ≤ F (λ); (b) G(σ) + σG′(σ) > F (λ) and F (λ) ≥ G(σ); (c) G(σ) > F (λ).

We obtain more detailed information concerning the tunnelling time between the higher
local minimum of V (which corresponds to a locally stable, or metastable state) and the absolute
minimum which corresponds to the equilibrium state. For ξ ∈ ΩN , we define the (half) length
of the largest excursion of ξ to be

Lmax(ξ) = sup {ℓ ∈ J1, NK : ∃x ∈ J0, 2NK, ξx = ξx+2ℓ = 0, ∀y ∈ J1, 2ℓ− 1K, ξx+y > 0} . (2.31)

Assuming that E(λ, σ) > 0, we let β∗ ∈ (0, 1) denote the unique solution of (2.26) and let E iN ,
i = 1, 2 be the domains of attraction of the two local minima of V

E1
N := {ξ ∈ ΩN : Lmax(ξ) ≤ β∗N} ,

E2
N := {ξ ∈ ΩN : Lmax(ξ) > β∗N} .

(2.32)

We let HN denote the domain of attraction of the higher of these two minima, that is

HN :=

{
E2
N if G(σ) ≤ F (λ),

E1
N if G(σ) > F (λ).

(2.33)

Our choice for breaking the tie when G(σ) = F (λ) is not arbitrary at all and comes from the
estimates for the partition function beyond the exponential scale obtained in Proposition 2.1.

According to our heuristic analysis, the behavior of the dynamics when E(λ, σ) > 0 should
be the following: If starting from a configuration ξ ∈ HN , the system should quickly thermalize
in HN (within a time which is polynomial in N) and then take a time of order exp(2NE(λ, σ))
to jump from HN to ΩN \HN and reach equilibrium. Moreover, when properly rescaled the time
for jumping from HN to ΩN \ HN should converge to an exponential random variable.

These features (existence of different time scales, and loss of memory from one time scale to
another) are the signature of metastable behavior of the system. We refer to [BDH16, Lan19]
for an introduction to the phenomenon and a review of the literature.

Given ν a probability on ΩN we let Pν denote the law of the Markov chain (ηt)t≥0 starting
with η0 distributed as ν. Our last result establishes the metastability of our system in the sense
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that it shows that the dynamics starting from HN exits it at an exponential rate which is given
by the relaxation time of the dynamics.

Theorem 2.8. We have

lim
N→∞

PµN (·|HN )

(
ηtTN

rel(λ,σ)
∈ HN

)
= exp(−t),

and the finite-dimensional distributions of the process 1HN
(ηtTN

rel(λ,σ)
) (under PµN (·|HN )) converges

to that of a Markov process which starts at one and jumps, at rate one, to zero where it is absorbed.

Remark 2.9. We have chosen to present the result in the above form because it comes as an
easy consequence of the analysis needed to prove Theorem 2.7 and of a general criterion established
in [BL15]. Pushing the analysis further and following the ideas developed in [CLM+12, Section
1.3] for monotone system, one can most likely get a more detailed picture of the metastable
behavior (convergence profile to equilibrium starting from extremal conditions, exponential hitting
times for the potential wells etc...).

2.4. Organization of the chapter. In Section 3, we gather most of the technical estimates
on the partition function ZN (λ, σ). This contains in particular the proof of Proposition 2.1 and
Theorem 2.4 but also some of the estimates needed in the following sections to estimate the
relaxation time.

In Section 4, we derive the lower bound on the relaxation time in Theorem 2.7. This is
the easier of the two bounds, but perhaps the more important since the proof allows to identify
exactly what slows down the relaxation to equilibrium, which is a single bottleneck in the space
of configuration.

In Section 5, we prove almost matching upper bound (up to correction of polynomial order).
Our proof relies on the combination of several techniques (induction, chain reduction, path/flow
methods...). While these techniques now became part of the classic toolbox to study mixing
time, their combination and implementation to this case required an insightful understanding
of the relaxation mechanism of this particular system. This is the most technical part of the
chapter.

In Section 6, we show that the estimates proved in previous sections are sufficient to check
all the conditions needed to apply the general metastability results from [BL15].

About notation. In order to make the proof more readable we avoid writing integer parts
and write in many instances

∑t
i=1 for

∑⌊t⌋
i=1. The constants used in the proof are not numbered

the same C can assume different values in different equations. We tried to underline the de-
pendence in the parameter by writing C(λ) and C(λ, σ) when it has some importance, with a
particular care for the dependence in σ since some parts of the proof crucially rely on it.

3. Equilibrium behavior and partition function asymptotics

Let us expose here our general strategy to understand the equilibrium measure, and obtain
not only the asymptotics for the partition functions contained in Proposition 2.1 but also a variety
going to be required to analyse the dynamics and prove Theorem 2.7. Our starting point is the
observation that decomposing the path into excursions away from the x-axis and factorizing we
obtain

ZN (λ, σ) :=
∑
k≥1

∑
n1,...,nk∑k
i=1 nk=N

λk−1
k∏
i=1

Zni

(
0,
σni
N

)
. (3.1)
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Hence our first task is going to be to understand the detailed behavior of ZN (0, σ) for a large
range of σ and then use it in the above decomposition.

3.1. The case λ = 0. This case is first treated separately. It then plays an important role
to obtain estimates both for λ ≤ 2 and λ > 2. The statement is actually more precise than what
is required for Proposition 2.1 (in the sense that it is uniform in σ). This precision is necessary
for some of the spectral gap estimates in Section 5.

Proposition 3.1. For all K > 0, there exists a constant C = CK > 0, such that for all
N ≥ 1, and all σ ∈ [0,K]

1

C
√
N

(
N−1/2 ∨ σ

)2
≤ ZN (0, σ)

exp (2NG(σ))
≤ C√

N

(
N−1/2 ∨ σ

)2
(3.2)

where G(σ) is defined in (2.12). Moreover, given ε,K > 0 then, there exists δ = δ(ε) > 0 such
that we have for all N ≥ N0(ε,K), and σ ∈ [0,K]

µ0,σN

(
sup
u∈[0,2]

∣∣∣∣ 1N ξ⌈uN⌉ −Mσ(u)

∣∣∣∣ > ε

)
≤ e−δN . (3.3)

Proof. Our proof follows the mainline of [Lab18, Proposition 3] with an additional care
needed to deal with the positivity constraint. Hence the first step is to reduce the statement
to the estimate of the probability of a given event. We let P denote the distribution of the
nearest-neighbor symmetric simple random walk in Z starting from 0. Given a simple random
walk trajectory we define AN (S) :=

∑2N−1
n=1 Sn+

S2N
2 , to be the algebraic area between the graph

of S = (Sn)
2N
n=1 and the x-axis. We have (the tilt by −σS2N having no effect)

ZN (0, σ) = E
[
e

σAN (S)

N
−σS2N1{S2N=0 ; ∀n∈J1,2N−1K, Sn>0}

]
. (3.4)

We introduce νN a probability which is absolutely continuous with respect to P with density
given by

dνN
dP

(S) :=
e

σAN (S)

N
−σS2N

E
[
e

σAN (S)

N
−σS2N

] . (3.5)

The tilt by −σS2N has the effect of recentering the distribution of S2N and to make the event
{S2N = 0} typical under νN . Indeed let (Xk)1≤k≤2N denote the increments of our random walk,
and we have

σAN (S)

N
− σS2N =

2N∑
k=1

hNk Xk where hNk :=
σ

N

(
N − k +

1

2

)
. (3.6)

We have

ZN (0, σ) = E
[
e

σAN (S)

N
−σS2N

]
νN (S2N = 0 ; ∀n ∈ J1, 2N − 1K, Sn > 0) . (3.7)

Recalling the definition of L in (2.12) we have

E
[
e

σAN (S)

N
−σS2N

]
= exp

(
2N∑
k=1

L(hNk )

)
. (3.8)
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By the approximation of Riemann integral and the Taylor-Lagrange inequality (we have L′′(x) =
1− tanh2(x) ∈ [0, 1]) we obtain∣∣∣ 2N∑

k=1

L(hNk )− 2N

∫ 1

0
L (σ(1− 2x)) dx

∣∣∣ ≤ σ2

4N
, (3.9)

and hence that ∣∣∣logE [eσAN (S)

N
−σS2N

]
− 2NG(σ)

∣∣∣ ≤ σ2

4N
. (3.10)

The first term in the r.h.s. in (3.7) can be replaced by e2NG(σ) to obtain an asymptotic equivalent.
The asymptotic equivalent of the second term νN (· · · ) is the object of Proposition 3.2 which
allows to conclude the proof of (3.2).

Let us now prove (3.3). The rewriting of ZN (0, σ) in (3.7) can be performed for the partition
function integrated against an arbitrary event A yields S2N = 0

µ0,σN (A) = νN (A | S2N = 0 ; ∀n ∈ J1, 2N − 1K, Sn > 0) ≤ CKN
3/2νN (A). (3.11)

where for the last inequality we used Proposition 3.2 below. Hence it is sufficient for us to show
that

νN

(
sup
u∈[0,2]

∣∣∣∣ 1N ξ⌈uN⌉ −Mσ(u)

∣∣∣∣ > ε

)
≤ 2Ne−2δN . (3.12)

Since Mσ is 1−Lipschitz, by union bound it is sufficient to check that that

sup
n∈J0,2NK

νN (|ξn −NMσ(n/N)| > Nε/2) ≤ e−2δN , (3.13)

where δ = ε2/130 for all N ≥ N0(ε,K). This is a simple consequence of Hoeffding’s inequality
(see e.g. [Pet19, Proposition 1.8]) for a sum of bounded independent variables. The only thing
to check is that NMσ(n/N) approximates well the expectation of ξn (that is, that the difference
is of a smaller order than N). By Riemann sum approximation we have

|νN [ξn]−NMσ(n/N)| =

∣∣∣∣∣
n∑
k=1

tanh(hNk )−NMσ(n/N)

∣∣∣∣∣ ≤ σ2

N
, (3.14)

which allows to conclude.
□

Proposition 3.2. With the definitions above, there exists a constant C = CK such that for
every N ≥ 1 and σ ∈ [0,K]

1

C
√
N

(σ ∨N−1/2)2 ≤ νN (S2N = 0 ; ∀n ∈ J1, 2N − 1K, Sn > 0) ≤ C√
N

(σ ∨N−1/2)2. (3.15)

Proof. First we show that we can find a constant C such that for every σ ∈ [0,K]

1

C
N−1/2 ≤ νN (S2N = 0) ≤ CN−1/2. (3.16)

This follows from the proof of [Lab18, Lemma 11], a quick way to check is via Fourier transform.
Grouping the increments of S2N with opposite drifts we obtain (since S2N ∈ 2Z we only need to
average over an interval of length π)

νN (S2N = 0) =
1

π

∫
[−π/2,π/2]νN [eiξS2N ]dξ

=
1

π

∫
[−π/2,π/2]

N∏
k=1

(1− αk,N (1− cos(2ξ))) dξ. (3.17)
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where
αk,N = 1− νN [Xk +X2N−k+1 = 0] =

1

2

(
1− tanh2(hNk )

)
.

This shows that (3.17) is increasing in σ and we can obtain the upper and lower bounds by
considering the cases σ = K and σ = 0 respectively. This is then a standard computation to
check that there exists a constant C (depending on K) such that for every ξ ∈ [−π/2, π/2]

e−CN |ξ|2 ≤ νN [e
iξS2N ] ≤ e−

N
C
|ξ|2 , (3.18)

and conclude. Another thing we can deduce from the above computation and using the fact that
S2N − SN is independent from SN and has the same distribution as −SN is that

|νN [eiξSN ]|2 = νN [e
iξS2N ] ≤ e−

N
C
|ξ|2 , (3.19)

and thus we have

νN (SN = x) =
1

π

∫
[−π/2,π/2]

νN [e
iξ(SN−x)]dξ ≤ 1

π

∫
[−π/2,π/2]

|νN [eiξ(SN−x)]|dξ ≤ CN−1/2.

(3.20)
Our second observation uses the FKG inequality (cf. [Lac16b, Lemma 3.3]) for the measure
P (· | SN = x). Note that for every σ > 0, the density of νN with respect to P is an increasing
function for the natural partial order on S. Hence from the FKG inequality we have

νN (∀n ∈ J1, 2N − 1K, Sn > 0 | S2N = 0)

≥ P (∀n ∈ J1, 2N − 1K, Sn > 0 | S2N = 0) =
1

2(2N − 1)
. (3.21)

where the last equality is easily obtained combining the reflection principle and some basic
combinatorics (see e.g. [Dur10, Theorem 4.3.1]). Thus there is a constant for which for every
σ ∈ [0,K]

νN (S2N = 0 ; ∀n ∈ J1, 2N − 1K, Sn > 0) ≥ CN−3/2. (3.22)

As a consequence, we have to prove the lower bound in (3.15) only when σ
√
N is large. Let

S̃n := S2N−n−S2N . Note that (S̃n)Nn=1 and (Sn)
N
n=1 are independent and identically distributed.

Hence we have

νN (S2N = 0 ; ∀n ∈ J1, 2N − 1K, Sn > 0)

= νN

(
SN = S̃N ; ∀n ∈ J1, NK, Sn, S̃n > 0

)
=

N∑
x=1

νN (SN = x ; ∀n ∈ J1, N − 1K, Sn > 0)2 . (3.23)

To obtain a lower-bound, the FKG inequality applied to the measure P (· | SN = x) yields

νN (∀n ∈ J1, N − 1K, Sn > 0 | SN = x) ≥ P (∀n ∈ J1, N − 1K, Sn > 0 | SN = x) =
x

N
, (3.24)

where the last equality is the ballot theorem. Now as we have for all σ ∈ [0,K]

νN (SN ) =

N∑
k=1

tanh(hNk ) ≥ cσN and VarνN (SN ) ≤ N. (3.25)

and thus we obtain that

νN (SN ∈ {|SN − νN (SN )| ≤
√
2N}) ≥ 1/2. (3.26)
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Hence assuming that cσN ≥ 2
√
2N and using Cauchy-Schwartz inequality we have

νN (S2N = 0 ; ∀n ∈ J1, 2N − 1K, Sn > 0) ≥ N−2
∑

|x−νN (SN )|≤
√
2N

νN (SN = x)2x2

≥ N−2(cσN −
√
2N)2

∑
|x−νN (SN )|≤

√
2N

νN (SN = x)2 ≥ c′N−1/2σ2, (3.27)

which is the desired lower bound. For the upper-bound, we can assume that σ ≤ 1/20 since in
all other cases (3.16) is sufficient to conclude. Our aim is to prove that for every x ≥ 0

νN (∀n ∈ J1, N − 1K, Sn > 0 | SN = x) ≤ 10

(
x+ 2

√
N

N
+ σ

)
. (3.28)

This is trivial when x ≥ N/10, so we may assume that x ≤ N/10. We let νxN the measure defined
by adding an extra tilt at the end point setting

dνxN
dνN

(S) =
1

Jx,N
e

3(x+
√
N)SN

N with Jx,N = νN

(
e

3(x+
√
N)SN

N

)
. (3.29)

The average of SN under this alternative measure is given by

νxN (SN ) =
N∑
k=1

tanh

(
hNk +

3(x+
√
N)

N

)
≥ σN

4
+ 2(x+

√
N). (3.30)

Since the variance is smaller than N we have in particular νxN (SN ≥ x) ≥ 1/2 and hence

νN (∀n ∈ J1, N − 1K, Sn > 0 | SN = x) ≤ νxN (∀n ∈ J1, N − 1K, Sn > 0 | SN = x)

≤ νxN (∀n ∈ J1, N − 1K, Sn > 0 | SN ≥ x) ≤ 2νxN (∀n ∈ J1, NK, Sn > 0) . (3.31)

To bound the last estimate, we can compare νxN with QN,x,σ under which S is a simple random
walk with constant tilt equal to 3(x+

√
N)

N + σ, that is, increments are IID and

QN,x,σ(S1 = ±1) =
e
±
(

3(x+
√

N)
N

+σ
)

2 cosh
(
3(x+

√
N)

N + σ
) .

We have

νxN (∀n ∈ J1, NK, Sn > 0) ≤ QN,x,σ (∀n ∈ J1, NK, Sn > 0) =
1

N
QN,x,σ(SN ∨ 0). (3.32)

The equality above is simply a consequence of the fact that by the ballot Theorem, for every
y ≥ 0

QN,x,σ (∀n ∈ J1, NK, Sn > 0 | SN = y) =
y

N
.

Now we have (using Cauchy-Schwartz inequality, the inequality
√
a+ b ≤

√
a+

√
b and bounding

the variance by N)

QN,x,σ(SN ∨ 0) ≤
(
QN,x,σ(S

2
N )
)1/2 ≤ QN,x,σ(SN ) +

√
VarQN,x,σ

(SN )

≤ N tanh

(
3(x+

√
N)

N
+ σ

)
+
√
N. (3.33)
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The inequality (3.28) follows by combining (3.31) and (3.32). We are now ready to conclude our
upper bound proof. Recall (3.23), and from (3.20) we have

N∑
x=1

νN (SN = x ; ∀n ∈ J1, N − 1K, Sn > 0)2

≤ CN−1/2
N∑
x=1

νN (SN = x) νN (∀n ∈ J1, N − 1K, Sn > 0 | SN = x)2

≤ CN−1/2νN

(SN + 2
√
N

N
+ σ

)2
 . (3.34)

where the second inequality is a direct consequence of (3.28). The upper bound in (3.15) then
follows from our estimates on variance of SN (3.25) and that on the expectation since from the
explicit expression in (3.25) we can deduce that νN (SN ) ≤ σN.

□

Now it remains to provide an upper bound on the partition function valid for every σ > 0 and
λ > 0. We treat separately the cases F (λ) ≥ G(σ) and G(σ) > F (λ).

3.2. The case when F (λ) ≥ G(σ). This subsection is devoted to the proof of the upper
bound on the partition function when F (λ) ≥ G(σ), that is

Proposition 3.3. When G(σ) ≤ F (λ) and λ > 2, there exists a constant C(λ) > 0, such
that for all N ≥ 1,

ZN (λ, σ) ≤ C(λ) exp (2NF (λ)) . (3.35)

Moreover when G(σ) < F (λ), then for every ε > 0 there exists δ > 0 such that for all N
sufficiently large,

µN (Lmax(ξ) ≥ εN) ≤ e−δN . (3.36)

When G(σ) = F (λ), for all N ≥ N0(ε) sufficiently large we have

µN (Lmax(ξ) ∈ [εN, (1− ε)N ]) ≤ e−δN ,

1

C(λ)
√
N

≤ µN (Lmax(ξ) > (1− ε)N) ≤ C(λ)√
N
.

(3.37)

We provide a proof for Proposition 3.3 from the viewpoint of renewal process. For simplicity
of notations, for each n ∈ J1, NK, set

K(n) := P (S2n = 0;∀k ∈ J1, 2n− 1K, Sk > 0) ,

K̃(n) := λe−2nF (λ)Zn

(
0,
nσ

N

)
.

(3.38)

Note that with this definition, we have from (3.1)

λe−2NF (λ)ZN (λ, σ) =
N∑
k=1

∑
(n1,...,nk)∑k
i=1 ni=N

k∏
i=1

K̃(ni). (3.39)

The key point here is that with our assumption, K̃(n) almost sums to 1 and thus can be inter-
preted as the interarrival law of a renewal process.
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Lemma 3.4. When G(σ) < F (λ), there exists a constant C(λ, σ) > 0 such that for all N ≥ 1,
N∑
n=1

K̃(n) ≤ 1 +
C(λ, σ)

N
. (3.40)

When 0 < G(σ) = F (λ), for every given ε ∈ (0, 12) there exists a constant C(λ) such that for all
N ≥ N0(ε) sufficiently large,

(1−ε)N∑
n=1

K̃(n) ≤ 1 +
C(λ)

N
. (3.41)

Proof of Proposition 3.3 from Lemma 3.4. By monotonicity in σ, it is sufficient to
treat the case G(σ) = F (λ). For pedagogical reason however we start with the easier case
G(σ) < F (λ) (and a slightly weak-statement see below). We set

K̂(n) := K̃(n)/
N∑
m=1

K̃(m) (3.42)

and let P̂ denote the law of a renewal process τ starting from zero with interarrival law K̂. That
is a increasing sequence (τk)k≥0 with IID increments whose distribution is given by K̂(n). We
also consider τ as a subset of N and write {N ∈ τ} for {∃k ≥ 0, τk = N}. We have from (3.39)

λe−2NF (λ)ZN (λ, σ) =

N∑
k=1

(
N∑
m=1

K̃(m)

)k ∑
(n1,...,nk)∑k
i=1 ni=N

k∏
i=1

K̂(ni)

≤

(
1 ∨

N∑
m=1

K̃(m)

)N
P̂ (N ∈ τ) ≤ eC(λ,σ) (3.43)

where the last inequality uses Lemma 3.4 (and the fact that a probability is always smaller than
one). Note that this does not provide a full proof of (3.35) since the constant in the upper bound
does depend on σ.

Let us now treat the case G(σ) = F (λ). For a given ε ∈ (0, 12), we redefine

K̂(n) := K̃(n)1{n≤(1−ε)N}/

 ∑
1≤m≤(1−ε)N

K̃(m)

 . (3.44)

and update the definition of P̂ accordingly. Now we can make a computation similar to (3.43)
but including possibly one long jump. We obtain (we have put in the factor term eC(λ) which
accounts for the fact that the K̃ do not sum to one.)

λe−2NF (λ)ZN (λ, σ) ≤ eC(λ)

[
P̂ (N ∈ τ) +

∑
a,b∈J0,NK

b−a>(1−ε)N

P̂ (a ∈ τ) K̃(b− a)P̂ (N − b ∈ τ)

]

≤ eC(λ)

1 +
∑

a,b∈J0,NK
b−a>(1−ε)N

K̃(b− a)

 ≤ eC(λ)

(
1 +

C ′(λ)√
N

)
. (3.45)
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To obtain the last inequality, note that as G(σ) = F (λ), by Proposition 3.1 we have

K̃(n) ≤ λC√
N
e2n(G(nσ/N)−G(σ)) ≤ λC√

N
e−

2n(N−n)
N

G(σ),

where the last inequality follows by convexity of G. Summed over a and b this yields the adequate
C ′(λ)/

√
N term (since we are on the critical line, σ is a function of λ).

Let us now turn to the proof the statements concerning the length of the largest excursion
Lmax. When F (λ) > G(σ), repeating (3.39) but summing over ξ displaying a large jump we have

µN (Lmax(ξ) ≥ εN) ≤ C(λ, σ)P̂(Lmax(τ) ≥ εN ; N ∈ τ)

e−2NF (λ)ZN (λ, σ)
, (3.46)

where Lmax(τ) := max{|τk − τk−1| : τk ≤ N} is the largest inter-arrival before N in the
renewal sequence. The denominator in the r.h.s. in (3.46) is larger than e−2NF (λ)ZN (λ, 0) which
according to (2.9) is of constant order. It remains to show that the denominator is exponentially
small. We have

P̂(Lmax(τ) ≥ εN ; N ∈ τ) ≤ NP̂(τ1 ≥ εN) ≤ N

K̃(1)

N∑
n=εN

K̃(n). (3.47)

Now from (3.7)-(3.9) and the definition of K̃, we have

K̃(n) ≤ λe2n(G(σn
N

)−F (λ))+ σ2n
4N2 ≤ C(λ, σ)e2n(G(σ)−F (λ)) (3.48)

and hence it decays exponentially, and so does the sum in (3.47). When F (λ) = G(σ), we
proceed similarly and we only have to show that (for the renewal defined in (3.44))

P̂(Lmax(τ) ∈ [εN, (1− ε)N ] ; N ∈ τ) ≤ e−δN . (3.49)

We use (3.48) and G( nN σ) ≤ G((1− ε)σ) for all n ≤ (1− ε)N to obtain

P̂(τ1 ∈ [εN, (1− ε)N ]) ≤ 1

K̃(1)

∑
εN≤n≤(1−ε)N

K̃(n) ≤ C(λ, σ)e−2εN(F (λ)−G((1−ε)σ)). (3.50)

Finally to estimate (from above and below) the probability of having long jumps when F (λ) =
G(σ) (in that case the value of σ is determined by that of λ) we first observe that from Proposition
3.1 and (3.35) we have

µN (Lmax(ξ) = N) =
ZN (0, σ)

ZN (λ, σ)
≥ 1

C(λ)
√
N
.

For the upper-bound, we observe that in (3.45), the contribution of jumps larger than (1− ε)N
is given by the sum over a and b and this readily implies that for all N ≥ N0(ε)

µN (Lmax(ξ) > (1− ε)N) ≤ C(λ)√
N
. (3.51)

□

Proof of Lemma 3.4. Recall the notations K(n) and K̃(n) in (3.38). By [Gia07, Equation
(1.6)] we know that

∞∑
n=1

λK(n)e−2nF (λ) = 1. (3.52)

Moreover, there exists a universal constant C0 > 0 such that for all n ≥ 1,

C−1
0 n−3/2 ≤ K(n) ≤ C0n

−3/2. (3.53)
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We are going to use different estimates for K̃(n) depending on whether n is small or large. We
adopt the same notation as in the proof of Proposition 3.1, S being a simple random walk and
An being the area between its graph and the x axis (see Equation (3.4) and above). For small
values of n, we observe that since An(S) ≤ n2 when S2n = 0 we have

K̃(n) = λe−2nF (λ)E
[
e

σAn(S)
N 1{S1>0,··· ,S2n−1>0,S2n=0}

]
≤ λe−2nF (λ)e

σn2

N K(n). (3.54)

Using (3.52), and the bounds K(n) ≤ 1 and eu − 1 ≤ 2u for u ≤ 1 we obtain for large values of
N

√
N/σ∑
n=1

K̃(n)− 1 ≤

√
N/σ∑
n=1

(
K̃(n)− λe−2nF (λ)K(n)

)

≤

√
N/σ∑
n=1

λK(n)e−2nF (λ)

(
e

σn2

N − 1

)
≤ λ

√
N/σ∑
n=1

e−2nF (λ) 2σn
2

N
≤ σC(λ)

N
. (3.55)

For large values of n we rely on (3.48). When G(σ) < F (λ), we bound G(σnN ) by G(σ). Using
this we obtain

N∑
n=

√
N/σ+1

K̃(n) ≤
∑

n≥
√
N/σ+1

Cλe2n(G(σ)−F (λ)) ≤ C ′(λ, σ)e−2
√
N/σ(F (λ)−G(σ)) ≤ C ′

N
. (3.56)

When G(σ) = F (λ), we bound G( nN σ) by G((1 − ε)σ) for n ≤ (1 − ε)N which is sufficient to
conclude. □

3.3. The case G(σ) > F (λ). Our objective in this section is to prove:

Proposition 3.5. If G(σ) > F (λ), then there exists a constant C(λ, σ) such that for every
N we have

ZN (λ, σ) ≤
C(λ, σ)√

N
e2NG(σ). (3.57)

On top of this, for a given ε > 0, there exists δ > 0 such that for all N sufficiently large we have

µλ,σN (Lmax(ξ) ≤ (1− ε)N) ≤ e−δN . (3.58)

Proof. Observe that if 0 ≤ λ ≤ λ′, we have
ZN (λ, σ) ≤ ZN (λ

′, σ),

µλ,σN (Lmax(ξ) ≤ (1− ε)N) ≤ µλ
′,σ
N (Lmax(ξ) ≤ (1− ε)N),

(3.59)

where the last inequality can be proved by FKG inequality (cf. [Lac16b, Lemma 3.3]). Therefore,
it is sufficient to prove the statements for λ > 2. To prove (3.57), we fix ε0 := ε0(λ, σ) > 0 (not
related to the ε in (3.58)) sufficiently small such that

F (λ) ≤ G((1− ε0)σ). (3.60)

From Lemma 3.4, we have
ε0N∑
m=1

K̃(m) ≤ 1 +
C(λ, σ)

N
. (3.61)

In order to estimate the partition function we are going to split the trajectories according to
where the position of jumps larger than ε0N away from the x-axis are located. Starting with
(3.1), letting l = (l1, . . . , lk) denote the length of those jumps and m = (m0, . . . ,mk) the space
between those jumps, we have (similarly to (3.45))
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ZN (λ, σ) ≤

(
1 ∨

ε0N∑
m=1

K̃(m)

)N ∞∑
k=0

λk−1
∑

(l,m)∈A(ε0)
N,k

k∏
i=0

e2miF (λ)P̂(mi ∈ τ)
k∏
j=1

Zlj

(
0,
σlj
N

)
. (3.62)

where

A(ε0)
N,k :=

[(lj)
k
j=1, (mi)

k
i=0] ∈ Z2k+1

+ : ∀j ∈ J1, kK, lj ≥ ε0N and
k∑
i=0

mi +
k∑
j=1

lj = N

 . (3.63)

Bounding above the probabilites by 1, and using the fact only k ≤ ε−1
0 are positive, we obtain

that

ZN (λ, σ) ≤ eC(λ,σ)

ε−1
0∑
k=0

λk−1
∑

(l,m)∈A(ε0)
N,k

e
∑k

i=0 2miF (λ)
k∏
j=1

Zlj

(
0,
σlj
N

)
=: eC(λ,σ)

ε−1
0∑
k=0

λk−1ZN,k. (3.64)

We are going to show first that the contribution of k = 0 and k ≥ 2 in the above sum are small.
We have ZN,0 = e2NF (λ). For k ≥ 2, we simply use the fact that #AN,k ≤ N2k+1 and (3.15) to
obtain that

ZN,k ≤ CkσN
2k+1e

∑k
i=0 2miF (λ)+

∑k
j=1 2ljG

(
ljσ

N

)
≤ CkσN

2k+1e2NG((1−ε0)σ), (3.65)

where the second inequality uses only the fact that lj/N ≤ (1−ε0) and the assumption in (3.60).
Finally for the case k = 1 we have

ZN,k ≤
∑
m0,m1

m0+m1<N(1−ε0)

e2(m0+m1)F (λ)ZN−m0−m1(0, σ)

≤ Ce2NG(σ)
∑
m0,m1

m0+m1<N(1−ε0)

e−2(m0+m1)[G(σ)−F (λ)]

√
N −m0 −m1

, (3.66)

and we conclude that the last sum is bounded above by CN−1/2 since F (λ) < G(σ).
Now we move to provide an upper bound on µN (Lmax(ξ) ≤ (1− ε)N). We need to estimate

ZN (λ, σ)µN (Lmax(ξ) ≤ (1 − ε)N). Using the decomposition above with ZN,0 = e2NF (λ) and
(3.65) to bound the contribution of k ≥ 2, it remains to to estimate the contribution corresponds
to case k = 1 and εN ≤ (m0 +m1) ≤ (1− ε0)N ,

∑
m0,m1

εN≤(m0+m1)≤(1−ε0)N

e2(m0+m1)F (λ)ZN−m0−m1

(
0, σ

N − (m0 +m1)

N

)

≤ CσN
2 exp (2NG((1− ε ∧ ε0)σ)) , (3.67)

where we use the assumption (3.60) and bound Zn(0, σ n
N ) by Zn(0, (1−ε)σ) for all n ≤ (1−ε)N .

The above inequality together with ZN (λ, σ) ≥ ZN (0, σ) and the lower-bound in (3.2) allows to
conclude.

□



3. EQUILIBRIUM BEHAVIOR AND PARTITION FUNCTION ASYMPTOTICS 91

3.4. Proof of Proposition 2.1 and Theorem 2.4. Let us first check that the combina-
tion of the previous statements yield Proposition 2.1. Proposition 3.3 and Proposition 3.5 give
the desired upper bound on the partition function. Concerning the lower bound, we have by
monotonicity for every λ, σ ≥ 0

ZN (λ, σ) ≥ max (ZN (λ, 0), ZN (0, σ)) , (3.68)

and thus the lower bounds in (2.15)-(2.16) are a direct consequence of Proposition 3.1 and (2.9).
Let us now turn to Theorem 2.4 which requires a bit more work. The statements in (2.21)

and (2.22) are proved in Proposition 3.3 and we are left with the proof of (2.20) and (2.23). We
focus on (2.20), the proof of (2.23) follows along the same line, and we leave it to the reader.
Since we have already proven the statement in the case σ = 0, our strategy is to reduce ourselves
to this case, by conditioning on the size of the unpinned region appearing in bulk of the system
(which we have proved to be of size N(1 − o(1)) (cf. Proposition 3.1 and Proposition 3.5). Let
us set

L(ξ) := sup {k ≤ N : ξk = 0} ,
R(ξ) := inf {k ≥ N : ξk = 0} .

(3.69)

We fix ε′ > 0 sufficiently small in a way that depends on ε and not on N (we will mention the
requirement along the proof). We have

µλ,σN

(
sup
u∈[0,2]

∣∣∣∣ 1N ξ⌈uN⌉ −Mσ(u)

∣∣∣∣ > ε

)

≤ max
ℓ,r∈J0,2NK

r−ℓ≥2N(1−ε′)

µλ,σN

(
sup
u∈[0,2]

∣∣∣∣ 1N ξ⌈uN⌉ −Mσ(u)

∣∣∣∣ > ε
∣∣∣ L(ξ) = ℓ, R(ξ) = r

)

+ µλ,σN
(
Lmax(ξ) ≤ (1− ε′)N

)
. (3.70)

The second term is exponentially small by Proposition 3.5. Concerning the first term in the r.h.s.
of (3.70), we observe that for ε′ sufficiently small we have with probability one

∀s /∈ [0, 2ℓ] ∪ [2r, 2N ],

∣∣∣∣ 1N ξs −Mσ(s/N)

∣∣∣∣ ≤ ε,

simply because both functions are 1/N -Lipschitz. Setting N̄ = (r− ℓ)/2 and σ̄ := r−ℓ
2N σ we only

have to look at the middle part of the path which after conditioning has distribution µ0,σ̄
N̄

. Hence
we need to estimate

µ0,σ̄
N̄

(
sup
u∈[0,2]

∣∣∣∣ 1N̄ ξ⌈uN̄⌉ −
N

N̄
Mσ

(
ℓ

2N̄
+
uN̄

N

)∣∣∣∣ > εN

N̄

)
. (3.71)

Choosing ε′ small we can ensure that

sup
u∈[0,2]

∣∣∣∣NN̄Mσ

(
ℓ

N̄
+
uN̄

N

)
−Mσ̄(u)

∣∣∣∣ ≤ ε/2 (3.72)

and we obtain that the term in the max in the r.h.s of (3.70) is smaller than

µ0,σ̄
N̄

(
sup
u∈[0,2]

∣∣∣∣ 1N̄ ξ⌈uN̄⌉ −Mσ̄(u)

∣∣∣∣ > ε/2

)
(3.73)

which is exponentially small from Proposition 3.1 (recall that N̄ ≥ N/2).
□
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4. Bottleneck identification and lower bound on the relaxation time

4.1. Heuristics. In order to understand Theorem 2.7, let us explain heuristically what
makes the systems mixing slowly when E(λ, σ) > 0. For this we have to describe the most likely
pattern that the system uses to relax to equilibrium.

In the case where F (λ) ≥ G(σ) which might be the more illustrative. Since at equilibrium
the interface is pinned, the configuration which is the further away from the x-axis (that is
ξmax
x = x∧(2N−x)) should be the furthest away from equilibrium. In order to reach equilibrium,
ξ needs to pin itself entirely on the wall, and the most likely way to do so is to shrink the unpinned
region, “continuously” (that is, in a way that appears continuous in the large N limit) moving the
extremities of the unpinned region inwards. When G(σ) > F (λ) the pattern should be simply
the opposite: we start from the bottommost configuration and try to grow an unpinned bubble
from the bulk of the interface until it reaches one of the extremities.

Following this strategy, for any β ∈ (0, 1) the dynamics must display at some point an
unpinned region of length 2βN(1 + o(1)) and a pinned region of length 2(1 − β)N(1 + o(1)).
From Proposition 3.1, we can heuristically infer that the contribution to the partition function
of configurations with an unpinned proportion β is, on the exponential scale, of order

exp (2N [βG(βσ) + (1− β)F (λ)]) .

Hence in order to understand relaxation to equilibrium, we need to study the function

β 7→ −βG(βσ)− (1− β)F (λ)

corresponding to the effective energy for a system constrained on having a large unpinned region
of relative size 2βN . This function admits a local maximum inside the interval [0, 1] if and only
if the equation G(βσ)+βσG′(βσ) = F (λ) admits a solution in (0, 1) which in turn occurs if and
only if G(σ) + σG′(σ) > F (λ).

WhenG(σ)+σG′(σ) ≤ F (λ), when diminishing β from 1 to 0, the effective energy −βG(βσ)−
(1− β)F (λ) only decreases (see Figure 6) indicating that the system should mix rapidly.

When G(σ) + σG′(σ) > F (λ), on the contrary in order to from β to go from 1 to 0 (if
F (λ) ≥ G(σ)) or 0 to 1 (if F (λ) < G(σ)), it needs to overcome an energy barrier. The height
of the energy barrier to overcome is exactly 2NE(λ, σ) (see Figure 6) which yields a heuristic
justification for having a mixing time of order e2NE(λ,σ).

Transforming this heuristic into a rigorous lower-bound on the mixing time is the easier part
of the argument. Indeed the value β∗ which maximizes the effective energy should correspond to
a bottleneck in the system in the sense given in [LP17, Section 7.2]. Getting a lower bound on
the mixing time from the bottleneck ratio is then a very standard and direct computation (cf.
[LP17, Theorem 7.4]).

The upper-bound is more delicate. The strategy above assumes that only one unpinned
region is formed and that the size of that unpinned region is the only relevant parameter for
the estimate of the relaxation time. In order to obtain an upper bound, without proving these
claim directly, we will use a set of techniques (induction, chain reduction, path-method...) which
allows to circumvent these issues.

4.2. Lower bound on the relaxation time. The goal of this subsection is to prove the
following result.
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Proposition 4.1. Let us assume that σ > 0. Then if E(λ, σ) > 0, then for all N ≥ 1, we
have

TNrel(λ, σ) ≥
c(λ, σ)

N2
exp(2NE(λ, σ)), (4.1)

where E(λ, σ) is defined in (2.25). Moreover, if E(λ, σ) = 0 , then

TNrel(λ, σ) ≥ c(λ, σ)N. (4.2)

To obtain (4.1), we simply evaluate the minimized quantity (2.7) for a function f which is
the indicator of our bottleneck event f := 1E1

N
where E1

N is defined in (2.32). To estimate the
Dirichlet form of this function we need to introduce the internal boundary of E1

N defined by

∂E1
N :=

{
ξ ∈ E1

N : ∃x ∈ J1, 2N − 1K, ξx ̸∈ E1
N

}
, (4.3)

and set for any event B ⊂ ΩN

Z(B) = Zλ,σ(B) := µN (B)ZN (λ, σ) =
∑
ξ∈B

2−2NλH(ξ) exp
(
σ
NA(ξ)

)
. (4.4)

The more important computation in this section is the estimate of the relative weight of each of
the E iN and of the boundary separating them.

Proposition 4.2. If E(λ, σ) > 0, then there exists a constant C = C(λ, σ) such that for
every N ≥ 1

C−1 ≤ Z
(
E1
N

)
e−2NF (λ) ≤ C,

C−1 ≤N1/2Z
(
E2
N

)
e−2NG(σ) ≤ C.

(4.5)

Furthermore, we have
1

C
≤

Z
(
∂E1

N

)
√
Ne2β∗NG(β∗σ)+2N(1−β∗)F (λ)

≤ C. (4.6)

Proof of Proposition 4.1. We first deal with the case E(λ, σ) > 0. By definition, we
know that VarµN (f) = µN

(
E1
N

)
µN
(
E2
N

)
and E(f) ≤ 2NµN

(
∂E1

N

)
, where the last inequality

uses the fact that
∑

ξ′∈ΩN
rN (ξ, ξ

′) ≤ 2N for all ξ ∈ ΩN . Thus, we have

TNrel(λ, σ) ≥
µN
(
E1
N

)
µN
(
E2
N

)
2NµN

(
∂E1

N

) =
Z
(
E1
N

)
Z
(
E2
N

)
2NZ

(
∂E1

N

)
ZN (λ, σ)

. (4.7)

Therefore, by Proposition 4.2 and Proposition 2.1 we have

TNrel(λ, σ) ≥
1

CN2
e2NE(λ,σ). (4.8)

We move to the case E(λ, σ) = 0 and adopt the strategy of [CMT08, Proposition 5.1]. We plug
the test function fa(ξ) = exp( aN

∑2N
x=1 ξx) with a > 0 in (2.7) and estimate the Dirichlet form

for fa. Since |Qx(fa)− fa| ≤ C
N fa for all x ∈ J1, 2NK, we have

E(fa) ≤
2C2

N
µN (f

2
a ),

and then

TNrel(λ, σ) ≥
µN (f

2
a )− µN (fa)

2

2C2

N µN (f2a )
=

N

2C2

(
1− ZN (λ, σ + a)2

ZN (λ, σ)ZN (λ, σ + 2a)

)
. (4.9)
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By Proposition 2.1, we choose the constant a such that G(σ+ a) ≤ F (λ) < G(σ+2a), and then
the r.h.s. of (4.9) is larger than or equal to

N

2C2
(1− exp(−cN)) ,

which allows us to conclude.
□

Proof of Proposition 4.2. Recalling that β∗ is the unique solution of (2.26), we have
G(σβ∗) < F (λ). Using this observation, using the definition (3.38) we have from the proof of
Lemma 3.4 that for every N ≥ σ

β∗N∑
n=1

K̃(n) ≤ 1 +
σC(λ)

N
. (4.10)

Indeed (3.55) yields the right-bound for the summation over 1 ≤ n ≤
√
N/σ, it is then sufficient

to replace N by β∗N in (3.56) and use the first inequality in (3.48) to obtain

β∗N∑
n=

√
N/σ+1

K̃(n) ≤
β∗N∑

n=
√
N/σ+1

λe
2n

[
(G(β∗σ)−F (λ))+ σ2

N2

]
≤ C ′(λ)e−c(λ)

√
N/σ. (4.11)

For the last inequality above, we simply have observed that σβ∗ depends only on λ. Now we
start with a decomposition in (3.1) and proceed as in the proof of Proposition 3.3 to obtain

Z(E1
N ) =

∑
k≥1

∑
n1,...,nk∑k
i=1 ni=N
ni≤β∗N

λk−1
k∏
i=1

Zni

(
0,
σni
N

)
≤ λ−1e2NF (λ)

(
1 +

C

N

)N
P̂[N ∈ τ̂ ] ≤ C ′e2NF (λ),

(4.12)
where τ̂ is a renewal with interarrival law

K̂(n) = K̃(n)1{n≤β∗N}/

β∗N∑
m=1

K̃(m)

 . (4.13)

For the lower bound, observe that by monotonicity for any ε > 0 (hence in particular for ε =
β∗(λ, σ))

Zλ,σ(Lmax ≤ εN) ≥ Zλ,0(Lmax ≤ εN) = µλ,0N (Lmax ≤ εN)ZN (λ, 0),

and we can then use (2.9) and (2.21) (in the easier case σ = 0) to conclude.

For Z(E2
N ) we first notice that by Proposition 3.1, we have

Z(E2
N ) ≥ ZN (0, σ) ≥

1

Cσ
√
N
e2NG(σ). (4.14)

and thus we can focus on the proof of the upper bound.

We proceed as for (3.62), but with a threshold at size β∗N for big jumps. We have

Z(E2
N ) ≤

(
1 +

C

N

)N ∞∑
k=1

λk−1
∑

(l,m)∈A(β∗)
N,k

k∏
i=0

e2miF (λ)P̂(mi ∈ τ)
k∏
j=1

Zlj

(
0,
σlj
N

)
(4.15)
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with A(β∗)
N,k defined in (3.63). Let us first control the contribution to the sum of the k = 1 term.

Using (3.15) it is bounded above by

Cσ(Nβ
∗)−1/2

∑
m0,m1

m0+m1≤N(1−β∗)

e
2(N−m0−m1)G

(
σ
(
1−m0+m1

N

))
+2(m0+m1)F (λ) ≤ C(λ, σ)N−1/2e2NG(σ)

(4.16)
where the last inequality is a consequence of the fact that when m0 +m1 ≤ N(1− β∗) then

(N −m0 −m1)G

(
σ

(
1− m0 +m1

N

))
+ (m0 +m1)F (λ)

≤ NG(σ)− (m0 +m1)
G(σ)− β∗G(σβ∗)− (1− β∗)F (λ)

1− β∗
, (4.17)

which itself derives from convexity (in R+) of u 7→ uG(σu) + (1 − u)F (λ). For any k ≥ 2
(and smaller than (β∗)−1) a similar computation gives us that the k-th term in the inequality is
smaller than

N2ke2NḠ(σ,k) with Ḡ(σ, k) := sup
β1,...,βk∈(β∗,1)∑

βi≤1

(
k∑
i=1

βiG (σβi) + (1−
k∑
i=1

βi)F (λ)

)
.

The result then follows from the fact that Ḡ(σ, k) < G(σ).

Now let us move to the case of Z(∂E1
N ). If ξ ∈ ∂E1

N , then it means that there is x ∈ J0, NK
such that ξ2x = 0 and ξ2x ∈ E2

N . Hence if a and b are such that a < x < b and, ξ2a = ξ2b = 0
and ξ2y > 0 for y ∈ Ja, bK \ {x} then one must have

max(b− x, x− a) ≤ Nβ∗ and b− a > Nβ∗. (4.18)

Decomposing over all possible values for a, b and x we find

Z(∂E1
N ) ≤ λ3

∑
a,b∈J0,NK

β∗N<b−a≤2β∗N

a+β∗N∑
x=b−β∗N

× Z
(N)
a (λ, σ)Zx−a

(
0,

(x− a)σ

N

)
Zb−x

(
0,

(b− x)σ

N

)
Z

(N)
N−b(λ, σ), (4.19)

where Z(N)
m (σ, λ) corresponds to a partition function with a constraint of having no large jumps:

Z
(N)
m (λ, σ) :=

∑
k≥1

∑
n1,...,nk∑k
i=1 nk=m
ni≤β∗N

λk−1
k∏
i=1

Zn

(
0,
σni
N

)
. (4.20)

From the upper bound on Z(E1
N ), we have Z(N)

m (σ, λ) ≤ Ce2mF (λ). Using the upper bound in
(3.15) and observing that at least one of the two length (x−a) or (b−x) is of order N we obtain
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that
a+β∗N∑
x=b−β∗N

Zx−a

(
0,

(x− a)σ

N

)
Zb−x

(
0,

(b− x)σ

N

)

≤ CN−1/2
2β∗N−b+a∑

y=0

e
2(β∗N−y)G(σ(β∗− y

N ))+2(b−a−β∗N+y)G
(
σ
(

(b−a+y)
N

−β∗
))

≤ 2CN−1/2e
2β∗NG(σβ∗)+2(b−a−Nβ∗)G

(
σ
(

b−a
N

−β∗
))

(2β∗N−b+a)/2∑
y=0

e
4y

(2β∗N−b+a)

[
(b−a)G

(
σ(b−a)

2N

)
−β∗NG(σβ∗)−(b−a−Nβ∗)G

(
σ
(

b−a
N

−β∗
))]

(4.21)

where in the last inequality we used the fact that second half of the sum is equal to the first half
and the convexity of the function

u 7→ (β∗ − u)G(σ(β∗ − u) +

(
b− a

N
− β∗ + u

)
G

(
σ

(
b− a

N
− β∗ + u

))
on [0, (2β∗N − b + a)/2N ]. Now if (b − a) ≤ 3β∗N/2, the sum in the last line of (4.21) is
bounded above by a constant (since we are summing something smaller than e−c(λ,σ)y). If
(b − a) > 3β∗N/2, we bound the sum above by N . Going back to (4.19), we obtain altogether
that

Z(∂E1
N )

e2β∗NG(β∗σ)+2N(1−β∗)F (λ)

≤ CN−1/2
∑

a,b∈J0,NK
β∗N<b−a≤2β∗N

e
2N

[
( b−a

N
−β∗)

(
G
((

(b−a)
N

−β∗
)
σ
)
−F (λ)

)]
+(logN)1{(b−a)>3β∗N/2}

≤ C
√
N

β∗N∑
k=1

e2k(G(
kσ
N )−F (λ))+(logN)1{k>3β∗N/2} ≤ C ′√N, (4.22)

where the last inequality follows from the fact that G (β∗σ)− F (λ) < 0. To obtain the convert
bound, we just need to consider the contribution to the sum of a, b, x such that x = a + β∗N
and b = x+ 1, and to avoid double counting, we impose the constraint that there is no jump of
size larger than Nβ∗/2 outside of (a, b). Therefore, let a′ := (1− β∗)N − a− 1 and we have

Z(∂E1
N ) ≥ Zβ∗N (0, σβ

∗)

(1−β∗)N−1∑
a=0

Za(λ, 0)µ
λ,0
a

(
Lmax ≤ β∗N

2

)
Za′(λ, 0)µ

λ,0
a′

(
Lmax ≤ β∗N

2

)
≥ 1

C

√
Ne2N(β∗G(σβ∗)+(1−β∗)F (λ)), (4.23)

where the last inequality follows from Proposition 2.1 and (2.21).
□

5. Upper bounds on the relaxation time

5.1. Stating the results. Let us state here the two main statements that we are going
to prove in this section and which, together with Proposition 4.1, provides a complete proof of
Theorem 2.7. The proof of these propositions will also provide most of the ingredients required
to prove the metastable behavior of the system when E(λ, σ) > 0, that is Theorem 2.8.
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We first prove that the system mixes in polynomial time when the activation energy is zero.

Proposition 5.1. Given λ > 2 there exists a constants C(λ) and C̃(λ) such that for all σ
satisfying E(λ, σ) = 0, for all N ≥ 1 we have

TNrel(λ, σ) ≤ C(λ)N C̃(λ). (5.1)

The second result of this section shows that when the activation energy of the system E(λ, σ)
is positive the lower bound proved in the previous section (that is, Proposition 4.1) is sharp up
to polynomial correction.

Proposition 5.2. If E(λ, σ) > 0, for all N ≥ 1 we have

TNrel(λ, σ) ≤ C(λ, σ)N C̃(λ,σ) exp(2NE(λ, σ)). (5.2)

5.2. The chain decomposition strategy. In order to obtain upper bounds on the relax-
ation times TNrel(λ, σ), we are going to rely repeatedly on a decomposition technique developed in
[JSTV04]. Let us state here this decomposition in a general framework. We consider a generic
continuous-time reversible and irreducible Markov chain on a finite state space S, with generator
L given by

(Lφ)(x) :=
∑
y∈Ω

r(x, y) (φ(y)− φ(x)) , (5.3)

where r are the transition rates. We let π and gap denote respectively the equilibrium measure
and the spectral gap associated with this Markov chain.

We consider also (Si)i∈I a partition of S indexed by an arbitrary index set I and let Li to
be the generator of the restricted chain with state space Si (it corresponds to the original chain
conditioned to remain in Si at all time). It is defined by

(Lif)(x) :=
∑
y∈Si

r(x, y) (f(y)− f(x)) . (5.4)

for f : Si → R and x ∈ Si. We let gapi denote the spectral gap associated with Li. Note that
the probability measure πi defined by πi(A) = π(A)/π(Si) for A ⊂ Si is reversible for Li. We
let gapi denote the spectral gap of Li. Finally we define the reduced chain on I with generator
L̄ given by (for ϕ : I → R)

(L̄ϕ)(i) :=
∑
j∈I

r̄(i, j) (φ(j)− φ(i)) , where r̄(i, j) :=
∑

x∈Si,y∈Sj

πi(x)r(x, y), i, j ∈ I. (5.5)

The probability π̄(i) = π(Si) for all i ∈ I is reversible for L̄. We let gap denote its spectral gap.
Note that the reduced chain does not correspond to the projection of the original chain on I
(which is in general a non-Markovian process) but to the projection of a modified process that
would be resampled using the probability πi between any two consecutive steps. Finally we let

γ̄ := max
i∈I

max
x∈Si

∑
y∈S\Si

r(x, y) (5.6)

denote the maximal exit rate from one of the Sis. The following proposition is the continuous
time adaptation of [JSTV04, Theorem 1]. How it allows to control the spectral gap of L is one
can control that of the reduced chain and those of the restricted chains.

Proposition 5.3. [CLM+12, Proposition 2.1] With the notation introduced above we have

gap ≥ min

(
gap

3
,
gapmini∈I gapi

gap + 3γ̄

)
. (5.7)
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5.3. The induction strategy. The main idea of the proof here is to use a decomposition
strategy, where the partition of the states is done according to the position of L(ξ) and R(ξ)
whose definition (given in (3.69)) we recall

L(ξ) := sup
{
k ≤ N : ξk = 0

}
,

R(ξ) := inf
{
k ≥ N : ξk = 0

}
.

(5.8)

We want to apply Proposition 5.3 with the partition of ΩN given by ΩN = ⊔(x,y)∈ΥN
Ω(x,y)

ΥN := {(x, y) : x, y ∈ J0, NK, 2x ≤ N ≤ 2y},
Ω(x,y) := {ξ ∈ ΩN : L(ξ) = 2x and R(ξ) = 2y}.

(5.9)

We need to estimate the spectral gap for the reduced chain on ΥN and for each of the restricted
chain on Ω(x,y). Roughly speaking, the idea is that when G(σ) + σG′(σ) < F (λ), both L(ξ) and
R(ξ) display a uniform drift towards the center and this makes the spectral gap bounded away
from below (like for a random walk with drift). The very sharp equilibrium estimates proved in
Section 3 allows us to make this rigorous in Proposition 5.6. Now the chain restricted to Ω(x,y)

is in fact a product chain since the respective restrictions of ηt to the intervals J0, 2xK, J2x, 2yK
and J2y, 2NK are independent Markov chains. The spectral gap gap(x,y) of the restricted chain
is thus given by the minimum of these three chains.

The restriction the interval J2x, 2yK is a variant of the weakly asymmetric exclusion process
whose mixing properties have been studied in details in [LL20]. Its spectral gap is well understood
and scales like (y−x+1)−2 (see Proposition 5.5 below). The restrictions to J0, 2xK and J2y, 2NK
on the other hand are simply the same as the original chain but on a smaller interval. This forces
us to proceed by induction. Our main task is going to be the proof of the following statement.
We let σ0(λ) be such that

G(σ0) + σ0G
′(σ0) = F (λ). (5.10)

Proposition 5.4. For any σ1 < σ0 there exists a constant c(λ, σ1) such that for any σ ≤ σ1
and any N ≥ 2 we have

gapN (λ, σ) ≥ c(λ, σ1) min
n≤N/2

(
gapn

(
λ,
nσ

N

)
, (N/2)−2

)
. (5.11)

We also have for all σ ≤ σ0

gapN (λ, σ) ≥ c(λ)N−4 min
n≤N/2

(
gapn

(
λ,
nσ

N

)
, (N/2)−2

)
. (5.12)

Proof of Proposition 5.1 using Proposition 5.4. We start by setting (using the con-
stant c(λ, σ0/2) given by Proposition 5.4)

C̃(λ) := 2 ∨ log2

(
1

c(λ, σ0/2)

)
+ 4. (5.13)

We are going to prove by induction that for every N ≥ 2 the property UN defined as

∀σ ∈ [0, σ0/2], gapN (λ, σ) ≥ N−C̃(λ)+4 (5.14)

is satisfied. When N = 2, we can see that #Ω2 = 2, and gap2(λ, σ) = 1 for all σ ∈ [0, σ1] using
(2.7). Now given N ≥ 3 and assuming that Un is valid for all n ≤ N − 1, we want to prove UN .
Therefore, by (5.11) and the induction hypothesis, we have

gapN (λ, σ) ≥ c(λ, σ0/2)

(
N

2

)−C̃(λ)+4

≥ N−C̃(λ)+4, (5.15)
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which concludes the induction proof. Now when σ ∈ (σ0/2, σ0] we apply (5.12) to obtain

gapN (λ, σ) ≥ c(λ)(N/2)−C̃(λ) (5.16)

and this concludes our proof.
□

5.4. Proof of proposition 5.4. As discussed above the key point here is to apply Propo-
sition 5.3. However, if we apply it directly the factor (5.6) corresponding to the partition
ΩN = ⊔(x,y)∈ΥN

Ω(x,y) is much too large. More specifically it is of order N , and applying Propo-
sition 5.3 directly would make us lose a factor N in (5.11) which, after the induction, would turn
into a factor exp((logN)2) in Proposition 5.1. Hence we perform a small modification to the
chain which is crucial to obtain a polynomial bound on the relaxation time.

Our modification simply constrains L(ξ) and R(ξ) to make only nearest neighbor move.
Recalling the definition of rN in (2.5), this corresponds to consider the Markov chain with
generator

L∗
N (f)(ξ) :=

∑
ξ′∈ΩN

r∗N (ξ, ξ
′)(f(ξ′)− f(ξ))

where
r∗N (ξ, ξ

′) := rN (ξ, ξ
′)1{|L(ξ)−L(ξ′)|≤2 and |R(ξ)−R(ξ′)|≤2}. (5.17)

Note that L∗
N is irreducible and reversible with respect to the same measure µλ,σN and thus for

this reason has a smaller spectral gap than the original chain. Letting gap∗N be the spectral gap
associated with this chain, we are going to prove that for σ ≤ σ1

gap∗N (λ, σ) ≥ c(λ, σ1) min
n≤N/2

(
gapn

(
λ,
nσ

N

)
, N−2

)
. (5.18)

and similarly for (5.12).

We apply Proposition 5.3 for L∗
N with the partition ΩN = ⊔(x,y)∈ΥN

Ω(x,y). We let gap(x,y)(λ, σ)
and gapN (λ, σ) be the spectral gaps of the corresponding restricted and reduced chains. Now
note that for our modified chain there are (at most) 4 transitions that change the value of L(ξ)
or R(ξ) and thus we have

max
(x,y)∈ΥN

max
ξ∈Ω(x,y)

∑
ξ′∈ΩN\Ω(x,y)

r∗N (ξ, ξ
′) ≤ 4. (5.19)

As a consequence we have

gap∗N (λ, σ) ≥ min

(
gapN (λ, σ)

3
,
gapN (λ, σ)minΥN

gap(x,y)(λ, σ)

gapN (λ, σ) + 12

)
. (5.20)

Now from the discussion of the previous section we have

gap(x,y)(λ, σ) = gapx

(
λ,
xσ

N

)
∧ gapN−y

(
λ,
σ(N − y)

N

)
∧ gapy−x

(
0,

(y − x)σ

N

)
, (5.21)

and as a consequence

min
ΥN

gap(x,y)(λ, σ) ≥
(
min
n≤N

gapn

(
0,
nσ

N

))
∧
(

min
n≤N/2

gapn

(
λ,
nσ

N

))
. (5.22)

To conclude the proof we need to rely on two estimates. The first one concerns the spectral gap
of the unpinned dynamics, and can be obtained via a simple comparision with the unconstrained
ASEP (see [LL19, Theorem 1] for the identification of the spectral gap in this case). The proof
is included in Appendix 3.A for completeness.
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Proposition 5.5. For any n ≤ N and for any σ > 0 we have

gapn(0, σ) ≥ 2 sin
( π

4N

)2
. (5.23)

The second one concerns the reduced chain. This chain informally can be thought as describ-
ing the evolution of a large unpinned zone present in the middle of the system. As remarked
in Section 4.1, when E(λ, σ) = 0, the corresponding effective potential does not display several
local minima, and thus avoids any bottlenecking. Combining this fact with the relatively simple
geometry of ΥN we obtain the following estimates.

Proposition 5.6. We recall the definition of σ0 in (5.10). For σ1 < σ0, There exists a
constant C(λ, σ1) such that for every N , every σ ∈ [0, σ1]

gapN (λ, σ) ≥ C(λ, σ1). (5.24)

Also there exists an constant C(λ) such that for all σ ≤ σ0

gapN (λ, σ) ≥ C(λ)N−4. (5.25)

Remark 5.7. The exponent 4 appearing in (5.25) is not optimal and a closer analysis would
show that the spectral gap is of order N−1 in that case. We have choosen to aim for a simpler
proof since we do not aim for an explicit exponent in Proposition 5.1.

Proof of Proposition 5.6. Consider the order on ΥN which is induced by the inclusion
order for the interval [x, y] that is

(x′, y′) ≽ (x, y) if x′ ≤ x and y′ ≥ y.

We are in fact going to prove a lower bound on the Cheeger constant associated with the dy-
namics, which is defined by

χ := min
A⊂ΥN : π̄(A)≤1/2

∑
(x,y)∈A,(x′,y′)∈A∁ π̄(x′, y′)r̄N [(x

′, y′), (x, y)]

π̄(A)
. (5.26)

In fact we are going to prove a lower bound on

χ′ := min
A⊂ΥN : (x0,y0)/∈A

∑
(x,y)∈A,(x′,y′)∈A∁ π̄(x′, y′)r̄N [(x

′, y′), (x, y)]

π̄(A)
. (5.27)

where (x0, y0) is the minimal element with positive propability in ΥN (which is either (N/2, N/2)
or ((N − 1)/2, (N + 1)/2)) for the order considered above. It is easy to check that χ ≥ χ′ since
the numerator of the minimized quantity is unchanged when A is replaced by A∁. Now from the
above observation and [LP17, Theorem 13.10] we have

gapN (λ, σ) ≥ (χ′)2/2. (5.28)

We are going to use an approximation for π̄. We set

p̄(x, y) := e
−2(y−x)F (λ)+2(y−x)G

(
σ(y−x)

N

)
(y − x+ 1)−3/2

(
σ2(y − x+ 1)3

N2
∨ 1

)
. (5.29)

We have by Propositions 3.1 and 3.3 that for some constant C1(λ)

C1(λ)
−1 ≤ π̄((x, y))

p̄((x, y))
≤ C1(λ). (5.30)

Since we also have
inf
x,y

r̄N ((x, y), (x± 1, y ± 1)) ≥ r∗(λ, σ1) > 0, (5.31)
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this implies that

χ′ ≥ r∗C−2
1 min

A⊂ΥN : (x0,y0)/∈A

∑
(x,y)∈A,(x′,y′)∈A∁ p̄(x′, y′)1{|x−x′|+|y−y′|=1}

p̄(A)
. (5.32)

Now for every x and y

min

[
log

(
p̄(x+ 1, y)

p̄(x, y)

)
, log

(
p̄(x, y − 1)

p̄(x, y)

)]
≥ 2

[
F (λ)− σ1G

′(σ1)−G(σ1)
]
=: γ(λ, σ1). (5.33)

Hence we have ∑
(x′,y′)≽(x,y)

p̄(x′, y′) ≤ (1− e−γ)−2p̄(x, y). (5.34)

Now given A such that (x0, y0) /∈ A. We let A′ denote the set of points which are immediate
inferior neighbor of a point in A,

A′ := {(x, y) ∈ A∁ : {(x− 1, y), (x, y + 1)} ∩A ̸= ∅}. (5.35)

Since (by immediate induction) for (x, y) ∈ A there is (x′, y′) ∈ A′ such that (x′, y′) ≼ (x, y),
then (5.34) implies that

p̄(A) ≤ (1− e−γ)−2p̄(A′). (5.36)
On the other hand we have ∑

(x,y)∈A,(x′,y′)∈A∁

p̄(x′, y′)1{|x−x′|+|y−y′|=1} ≥ p̄(A′). (5.37)

In view of (5.32) and (5.28) this implies that

gapN (λ, σ) ≥ (C1[1− e−γ ])−4(r∗)2/2.

In the case where G(σ) + σG′(σ) = F (λ), then we simply need to replace (1 − eγ)−2 by N2 in
(5.34) and we obtain that

gapN (λ, σ) ≥ (C1N)−4(r∗)2/2.

□

5.5. Proof of Proposition 5.2. Let us now prove that the lower bound proved in Propo-
sition 4.1 using a simple bottleneck argument is sharp up to polynomial correction. Our starting
point is to apply Proposition 5.3 considering this time the partition in two ΩN = E1

N ⊔ E2
N . We

let gapN,i be the spectral gap of the Markov chain restricted to E iN for i = 1, 2 and and let gap1,2
denote the spectral gap of the reduced chain on {1, 2}. Using the fact that for every ξ ∈ ΩN ,∑

ξ′∈ΩN

rN (ξ, ξ
′) ≤ 2N, (5.38)

we have

gapN (λ, σ) ≥ min

(
1

3
gap1,2,

gap1,2mini∈{1,2} gapN,i
gap1,2 + 6N

)
. (5.39)

The quantity gap1,2 corresponds exactly to E(f)/VarµN (f) with f = 1E1
N

, which was estimated
in Equation 4.7. The main task in our proof is thus to show that gapN,i decays only like a power
of N , or in other words, that the chains restricted to each of the potential wells mix rapidly.
This corresponds to the following two propositions:

Proposition 5.8. There exists c(λ) > 0 and C(λ, σ) such that for all N ≥ 2, we have

gapN,1 ≥ c(λ)N−C(λ,σ). (5.40)

Moreover C(λ, σ) can be chosen to be increasing in σ.
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Proposition 5.9. There exists c(λ, σ) > 0 such that for all N ≥ 2, we have

gapN,2 ≥ c(λ, σ)N−C(λ,σ). (5.41)

To prove these results, our strategy will be to use again the chain reduction to simplify the
geometry of the state space.

Proof of Proposition 5.2 from Proposition 5.8 and 5.9. Let r̄ and π̄ denote the
rates associated to the reduced chain. By the variational formula (2.7) , we have

gap1,2 =
r̄(1, 2)

π̄(2)
=

∑
ξ∈E1

N ,ξ
′∈E2

N
µN (ξ)rN (ξ, ξ

′)

µN (E1
N )µN

(
E2
N

) ≥
exp(2σN )

λ+ exp(2σN )

µN
(
∂E1

N

)
µN
(
E2
N

)
µN (E1

N )
.

The last inequality comes from the fact that for every ξ ∈ ∂E1
N there is at least one transition to

E2
N , and has rate exp( 2σ

N
)

λ+exp( 2σ
N

)
. Hence from Proposition 4.2 we have

gap1,2 ≥ c(λ, σ)
√
N exp(−2NE(λ, σ)). (5.42)

To conclude, we use (5.42) together with the results of Propositions 5.8 and 5.9 in (5.39).
□

5.6. Proof of Proposition 5.8. Let us assume by convention that if E(λ, σ) = 0 then
E1
N = ΩN and gapN,1(λ, σ) = gap(λ, σ). Since our proof proceeds by an iterative structure

similar to that of Proposition 5.1, we are going to proceed by by induction. Recall the definition
(5.10), we are going to prove the following statement (for the constant C̃(λ) given in Proposition
5.1) (which we refer to as Uk) is valid for all k ≥ 0 (for a sequence Ck(λ) that will be specified
in the course of the proof)

∀N ≥ 1, ∀σ ≤ 2kσ0, gapN,1(λ, σ) ≥ Ck(λ)N
−C̃(λ)−4k. (5.43)

The statement for k = 0 is exactly Proposition 5.1, so there is nothing to prove to start the
induction. Now assuming Uk let us prove Uk+1.

Again we replace the rate by restricting the transitions of L and R to nearest neighbor as in
(5.17). We apply Proposition 5.3 to this modified chain with the partition of E1

N given by
E1
N = ⊔(x,y)∈Υ′

N
Ω′
(x,y) where

Ω′
(x,y) := {ξ ∈ E1

N : L(ξ) = 2x and R(ξ) = 2y},
Υ′
N := {(x, y) : x, y ∈ J0, NK, 2x ≤ N ≤ 2y and y − x ≤ β∗N}.

(5.44)

We let gap′(x,y) be the spectral gap associated with the Markov chain restricted to Ω′
(x,y) and let

gapN,1 denote the spectral gap associated with the reduced chain on Υ′
N (whose transition are

only (x, y ± 1) and (x± 1, y)). Applying Proposition 5.3 we obtain that

gapN,1 ≥ min

(
gapN,1

3
,
gapN,1minΥN

gap′(x,y)(λ, σ)

gapN,1 + 12

)
. (5.45)

To provide a lower bound on gapN,1, we can repeat the proof of (5.25) in Proposition 5.6. The
important point here is that the probability distribution for the reduced chain is given by

π̄1(x, y) :=
Zx(λ,

σx
N )µ

λ,σx
N

x (Lmax ≤ β∗N)Zy−x(0,
σ(y−x)
N )ZN−y(λ,

σ(N−y)
N )µ

λ,σN−y
N

N−y (Lmax ≤ β∗N)

Z(E1
N )

.
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Now we have by a variant Proposition 4.2 (the estimate for Z(E1)) we have
1

C(λ)
e2xF (λ) ≤ Zx

(
λ,
σx

N

)
µ
λ,σx

N
x (Lmax ≤ β∗N) ≤ C(λ, σ)e2xF (λ). (5.46)

One needs to check within the proof of Proposition 4.2 that the bounding constant C does not
depend on x. The lower bound is easy and is obtained by replacing σ by 0. For upper bound
on the other hand, one only needs to apply the bound (4.10) (which depends on σ but not on

x since Nβ∗(σ) = xβ∗(σxN )). Using a similar bound for µλ,
σN−y

N
N−y (Lmax ≤ β∗N) we obtain that

π̄1(x, y) can be replaced by p̄(x, y) as in the proof of Proposition 5.6 and proceed similarly (here
the restriction y − x ≤ β∗N plays a crucial role) to obtain

∀σ ≤ 2k+1σ0, gapN,1 ≥ C ′
k(λ)N

−4. (5.47)

(the constant depend on σ but can be made uniform in the range σ ≤ 2k+1σ0). Let us now turn
to gap′(x,y). As in the proof of Proposition 5.4, the dynamic restricted to Ω(x,y) consists in three
independent part and thus we have

gap′(x,y) = gapx,1

(
λ,
xσ

N

)
∧ gapy−x

(
0,

(y − x)σ

N

)
∧ gapN−y,1

(
λ,

(N − y)σ

N

)
. (5.48)

where we recall that gapx,1
(
λ, xσN

)
is the spectral gap of the chain restricted to {ξ ∈ Ωx :

Lmax(ξ) ≤ β∗N} (here it is important to notice thatNβ∗(σ) = xβ∗(σxN )). Now xσ
N ,

(N−y)σ
N ≤ 2kσ0

so that one can apply the induction hypothesis to them. Combining this with Proposition 5.5
we have for every x, y ∈ Υ′

(x,y)

gap′(x,y) ≥ Ck(λ)N
−C̃(λ)−4k. (5.49)

Finally we can conclude that Uk+1 holds combining (5.49) and (5.47) and (5.45).
□

5.7. Proof of Proposition 5.9. While still relying on the chain decomposition method,
the proof of this result requires a new partition of the state space. This time we need to trace
the location of all the the excursions of size larger than β∗N . We define thus

ΨN := {[k, (ℓi, ri)ki=1] : k ≥ 1 ;∀i ∈ J1, kK, ri − ℓi > β∗N, and ℓi+1 ≥ ri}. (5.50)

Now given ξ ∈ E2
N we define k(ξ) and (ℓi(ξ), ri(ξ))

k(ξ)
i=1 as the number and position of excursions

of size larger than β∗N . Moreover, ℓi and ri are the unique increasing sequences that satisfy
∀i ∈ J1, kK, ri(ξ)− ℓi(ξ) > β∗N,

∀i ∈ J1, kK, ξ2ℓi = ξ2ri = 0 and ∀x ∈ J2ℓi + 1, 2ri − 1K, ξx > 0,

∀x ∈ J0, N − 1K \ {(ℓi, ri)}ki=1, ∃y ∈ Jx+ 1, (x+ β∗N) ∧NK, ξ2y = 0.

(5.51)

We also define

Ω[k,(ℓi,ri)ki=1]
:=
{
ξ ∈ E2

N : [k(ξ), (ℓi(ξ), ri(ξ))
k(ξ)
i=1 ] = [k, (ℓi, ri)

k
i=1]
}
. (5.52)

We use the letter ψ to denote a generic element of ΨN . In addition, let gapψ denote the spectral
gap associated with the Markov chain restricted to Ωψ, and let gapN,2 denote the spectral gap
associated with the reduced chain on ΨN . Our result easily follows from the following estimates
for the restricted and reduced chains respectively.

Proposition 5.10. There exist constants c(λ) > 0 and C(λ, σ) > 0 such that for all N ≥ 1,

min
ψ∈ΨN

gapψ ≥ c(λ)N−C(λ,σ).
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Proposition 5.11. For all N ≥ 1, we have

gapN,2 ≥ c(λ, σ)N−3.

Proof of Proposition 5.9 using Propositions 5.10 and 5.11. Applying Proposition
5.3 together with the fact that

∑
ξ′∈ΩN

rN (ξ, ξ
′) ≤ 2N for all ξ ∈ ΩN , we have

gapN,2 ≥ min

(
gapN,2

3
,
gapN,2minψ∈ΨN

gapψ
gapN,2 + 6N

)
≥ c′(λ, σ)N−C′(λ,σ). (5.53)

□

Proof of Proposition 5.10. Note that the chain restricted to Ωψ is indeed a product
chain since the respective restrictions of ηt to the intervals (J2ℓi, 2riK)ki=1 and (J2ri, 2ℓi+1K)ki=0
are independent Markov chains where r0 := 0 and ℓk+1 := N . The spectral gap gap[k,(ℓi,ri)ki=1]

associated with this restricted chain is thus given by the minimum of these chains. Furthermore,
the spectral gap of the restricted chain in the interval J2ℓi, 2riK is gapri−ℓi(0, σ

ri−ℓi
N ), and the

spectral gap of the restricted chain in the interval J2ri, 2ℓi+1K is gapℓi+1−ri,1(λ, σ
ℓi+1−ri
N ). Using

Propositions 5.5 and 5.8, we obtain

gapψ ≥ min
(
c(λ)N−C(λ,σ), N−2

)
= c(λ)N−C(λ,σ). (5.54)

□

Proof of Proposition 5.11. In this proof we let r̄ and π̄ denote the rates and invariant
measure associated to the reduced chain respectively. Additionally, define the edge set E and
the edge flows Q respectively by

E :=
{
{ψ,ψ′} : r̄(ψ,ψ′) > 0

}
,

Q
(
ψ,ψ′) := π̄ (ψ) r̄

(
ψ,ψ′) = π̄

(
ψ′) r̄ (ψ′, ψ

)
.

(5.55)

In order to get our bound for the spectral gap we are going to rely on the so called “path method”
(see [LP17, Chapter 13] for an introduction to the method and bibliographical remarks). For two
distinct elements ψ and ψ′ of ΨN we construct a path from ψ to ψ′ denoted by Γ(ψ,ψ′). Our
paths (whose explicit algorithmic construction is given below) are sequences (ψ0, ψ1, . . . , ψ|Γ|)
elements such that ψ0 = ψ, ψ|Γ| = ψ′ and any two consecutive elements forms an edge in E.
We say that e ∈ Γ if there exists j ≤ |Γ| such that {ψj−1, ψj} = e. For e ∈ E , we define the
congestion ratio over the edge e as

B(e) :=
1

Q(e)

∑
ψ,ψ′∈ΨN
e∈Γ(ψ,ψ′)

π̄ (ψ) π̄
(
ψ′) . (5.56)

By [LP17, Corollary 13.21], we have

gapN,2 ≥
(
max
e∈E

(B(e)) max
ψ,ψ′∈ΨN

|Γ (ψ,ψ′)|
)−1

. (5.57)

Since we aim for a polynomial bound and the cardinal of ΨN is a power of N , the length of the
path will not be an issue. Our construction must thus aim minimizing the congestion ratio.

To construct a path from ψ to ψ′, we construct in fact a path from ψ to [1, (0, N)] and from
ψ′ to [1, (0, N)] and concatenate these two paths (taking the second path in reverse order) to get
our full path whose length is at most 2N .

To construct the finite sequence [k(j), (ℓi(j), ri(j))
k(j)
i=1 ]

J
j=0 from ψ to [1, (0, N)] we proceed as

follows:
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• We set [k(0), (ℓi(0), ri(0))
k(0)
i=1 ] = ψ.

• If ℓ1(j) > 0 then ℓ1(j + 1) = ℓ1(j)− 1 and the other coordinates are unchanged.
• If ℓ1(j) = 0 and r1(j) < ℓ2(j) (or r1(j) < N if k(j) = 1) then r1(j + 1) = r1(j) + 1 and

the other coordinates are unchanged.
• If ℓ1(j) = 0 and ℓ2(j) = r1(j) then k(j+1) = k(j)−1, r1(j+1) = r2(j) and ri(j+1) =
ri+1(j), ℓi(j + 1) = ℓi+1(j) for i ∈ J2, k(j)− 1K.

• We stop the algorithm when one reaches [1, (0, N)].

By construction the length of the path satisfies |Γ(ψ,ψ′)| ≤ 2N for any ψ and ψ′. Now we
provide an upper bound on maxe∈E B(e) using the precise estimates in Section 3 and Section
4. By symmetry, given e at the cost of multiplicative factor 2, we can only sum over paths for
which e belongs to the “first-half” of the paths (that linking ψ to [1, (0, N)] let us call it Γ1(ψ)).
Summing over all possible end points ψ′ we obtain that

B(e) =
2

Q(e)
π̄ ({ψ : e ∈ Γ1(ψ)}) . (5.58)

To control the above quantity we need an explicit description of the set Ψ(e) := {ψ : e ∈ Γ1(ψ)}.
Let us say that e = {[m, (xi , yi)mi=1 ], [m

′, (x ′
i , y

′
i)

m ′
i=1 ]} and that [m, (xi, yi)

m
i=1] is the first state

visited on the path to Γ1(ψ) (with our algorithm which state is visited first does not depend on
ψ). We are going to prove the two following inequalities

Q(e) ≥ 1

C(λ, σ)

Z(Ω[m,(xi,yi)mi=1
])

Z(E2
N )

π̄ (Ψ(e)) ≤ C(λ, σ)
N2Z(Ω[m,(xi,yi)mi=1

])

Z(E2
N )

,

(5.59)

which are then sufficient to conclude using (5.57) and the bound we have for the path length. For
the first one, we just have to check that the rate r̄([m, (xi, yi)mi=1], [m

′, (x′i, y
′
i)
m′
i=1]) is bounded

away from zero (even though it is slightly improper since edges are not oriented, we use the
shorthand notation r̄(e) for the rate). There are two cases to treat: either the transition e

merges two excursions or it enlarges the first one. In the first case we have r̄(e) = exp( 2σ
N

)

λ+exp( 2σ
N

)
. In

the second case, let us assume that x′1 = x1 − 1 (the case y′1 = y1 + 1 being identical) we have

r̄(e) =
exp(2σN )

λ+ exp(2σN )
µN (ξ2(x1−1) = 0 | ξ ∈ Ω[m,(xi,yi)mi=1]

) =
exp(2σN )

λ+ exp(2σN )

λZx1−1Z1

Zx1
, (5.60)

where we have used the notation

Zn := Zn

(
λ, σ

n

N

)
µ
λ,σ n

N
n (Lmax ≤ β∗N) (5.61)

for n ∈ J1, NK and Z0 = 1. Recalling (5.46) we have

C(λ)−1 ≤ e−2nF (λ)Zn ≤ C(λ, σ), (5.62)

and thus we have the desired uniform lower bound for r̄(e). Now let us prove the second estimate
in (5.59). Note that

Ψ(e) ⊂
{
[n+m− 1, (x′′j , y

′′
j )
n
j=1 ∪ (xi, yi)

m
i=2] ∈ ΨN : n ≥ 1, x′′1 ≥ x1 and y′′n ≤ y1

}
. (5.63)
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Now we can partition Ψ(e) according to the value of x′′1 and y′′n (let us call them ℓ and r
respectively. Now for any element of this set we have

π̄ (Ψ(e))Z(E2
N )

Z(Ω[m,(xi,yi)mi=1
])

=
∑

ψ∈Ψ(e)

Z(Ωψ)

Z(Ω[m,(xi,yi)mi=1]
)

≤
∑

ℓ≥x1,r≤y1
r−ℓ≥β∗N

ZℓZr−ℓ
(
λ, r−ℓN σ

)
µ
λ, r−ℓ

N
σ

r−ℓ (Lmax > β∗N)Zx2−r
Zx1Zy1−x1

(
0, σ y1−x1N

)
Zx2−y1

. (5.64)

We can apply Proposition 4.2 to obtain that for any n ∈ [β∗N,N ]

Zn

(
λ, σ

n

N

)
µ
λ,σ n

N
n (Lmax > β∗N) ≤ C(λ, σ)√

N
e2nG( n

N
σ). (5.65)

We can use (5.62) and Proposition 3.1 to estimate the other terms. We obtain then (for a
difference constant)

ZℓZr−ℓ
(
λ, r−ℓN σ

)
µ
λ, r−ℓ

N
σ

r−ℓ (Lmax > β∗N)Zx2−r
Zx1Zy1−x1

(
0, σ y1−x1N

)
Zx2−y1

≤ C(λ, σ)e2(ℓ−x1+y1−r)F (λ)+2(r−ℓ)G( r−ℓ
N
σ)−2(y1−x1)G(

y1−x1
N

σ) ≤ C(λ, σ), (5.66)

where in the last inequality is simply due to the monotonicity of the functional β 7→ βG(βσ)−
βF (λ) = H(β) on the interval

[
r−ℓ
N , y1−x1N

]
⊂ [β∗, 1]. Indeed the quantity in the exponent is

equal to 2N [H
(
r−ℓ
N

)
−H

(y1−x1
N

)
]. Summing over ℓ and r we obtain the desired bound.

□

6. Metastability proof of Theorem 2.8

For the proof of Theorem 2.8, we simply have to use the previously proved estimates and use
a general result proved in [BL15]. We more specifically need a slightly modified version of the
statement which we cite from [LT15].

Theorem 6.1 (Theorem 5.1 in [LT15]). We consider a sequence of irreducible reversible
Markov chains in the state space ΩN , HN a subset of ΩN and set H∁

N := ΩN \ HN . We let µN
denote the reversible measure of the chain, gapN the spectral gap of the chain, and gapN,HN

,
gapN,H∁

N
the spectral gap of the corresponding restricted chains. Let PµN (·|HN ) denote the distri-

bution of the Markov chain (ηt) with initial distribution µN (·|HN ). Let us assume that
(1) limN→∞ µN (HN ) = 0.
(2) limN→∞

gapN
min(gapHN

,gap
H∁

N
) = 0.

Then under PµN (·|HN ) the finite dimensional distribution of the process 1HN
(ηtTN

rel
) converges to

that of a Markov chain which starts at 1 and jumps, at rate one, to 0 where it is absorbed.

The first condition in Theorem 6.1 says that all the mass is concentrated in H∁
N , and the

second condition says that the time for the dynamics restricted to HN (or H∁
N ) to relax to local

equilibrium is much shorter than that for the dynamics in ΩN to relax to global equilibrium.
Now we collect all for ingredients for verifying the assumptions in Theorem 6.1 to prove Theorem
2.8.
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Proof of Theorem 2.8. We recall the definition of HN in (2.33). We first check the case
G(σ) ≤ F (λ) where HN = E2

N . By (3.36) and (3.37) respectively, we have{
µN (E2

N ) ≤ e−CN , if G(σ) < F (λ);

µN (E2
N ) ≤

C√
N
, if G(σ) = F (λ).

(6.1)

Now we turn to the case G(σ) > F (λ) where HN = E1
N . By (3.58), we have

µN (E1
N ) ≤ e−CN . (6.2)

We have thus checked the first assumption in Theorem 6.1 in every case. Now we turn to verify
the second assumption. By Proposition 5.8 and Proposition 5.9, we have

min
(
gapHN

, gapH∁
N

)
= min

(
gapN,1, gapN,2

)
≥ c(λ, σ)N−C(λ,σ).

Moreover, by Proposition 4.1 we have

gapN ≤ C(λ, σ)N2 exp (−2NE(λ, σ)) , (6.3)

which allows us to verify the second assumption in Theorem 6.1. We apply Theorem 6.1 to
conclude the proof. □

3.A. Proof of Proposition 5.5

Since gapn(0, σ) = gapn−1(1, σ
n−1
n ) and it is more convenient to deal with gapn(1, σ), we

focus on the lower bound on gapn(1, σ) combining the ideas in [LL19] and [CMT08] (since this
is not a new argument, our proof while complete, keeps the level of details at minimum, we refer
the readers to [LL19, section 3.3] and [CMT08, Section 4] for more details in the computation
and intuition). For x ∈ J1, 2n−1K and f : J0, 2nK → R, set (∆f)(x) := f(x+1)+f(x−1)−2f(x)
and

p :=
exp(2σn )

1 + exp(2σn )
, q := 1− p.

For ξ ∈ Ωn and x ∈ J1, 2n− 1K with fξ(x) := ( qp)
1
2
ξx , a direct computation yields

(Lf·(x))(ξ) =
√
pq(∆fξ)(x)− (

√
p−√

q)2fξ(x)− (2p− 1)

√
q

p
1{ξx−1=ξx+1=0}. (3.A.1)

In view of (3.A.1) and [LL19, Subsection 3.3], for ξ ∈ Ωn we define

hn(ξ) := −
2n−1∑
x=1

(
q

p

) 1
2
ξx

sin
(πx
2n

)
,

Ψ(ξ) := (2p− 1)

√
q

p

2n−1∑
x=1

sin
(πx
2n

)
1{ξx−1=ξx+1=0}.

(3.A.2)

Moreover, we introduce a natural partial order on Ωn × Ωn as follows(
ξ ≤ ξ′

)
⇔

(
∀x ∈ J1, 2nK, ξx ≤ ξ′x

)
,

and there is a maximal element and a minimal element in Ωn. If ξ ≤ ξ′, then

hn(ξ) ≤ hn(ξ
′) and Ψ(ξ) ≥ Ψ(ξ′).
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If ξ ≤ ξ′, by (3.A.1) we have

(Lhn)(ξ′)− (Lhn)(ξ) = −
[
4
√
pq sin2

( π
4n

)
+ (

√
p−√

q)2
] (
hn(ξ

′)− hn(ξ)
)
+Ψ(ξ′)−Ψ(ξ)

≤ −
[
4
√
pq sin2

( π
4n

)
+ (

√
p−√

q)2
] (
hn(ξ

′)− hn(ξ)
)
,

(3.A.3)
where we have used summation by part in the equality. Let (ηξt )t≥0 denote the dynamics starting
from ξ ∈ Ωn, and there exists a canonical coupling (c.f. [LL20, Appendix A] with the positive
constraint) such that (

ξ ≤ ξ′
)
⇒
(
∀t ≥ 0, ηξt ≤ ηξ

′

t

)
.

Therefore, by [Wil04, Proposition 3] and the fact that

min
ξ≤ξ′,ξ ̸=ξ′

hn(ξ
′)− hn(ξ) > 0, (3.A.4)

we have

gapn(1, σ) ≥ 4
√
pq sin2

( π
4n

)
+ (

√
p−√

q)2 = 1− 2
√
pq
[
1− 2 sin2

( π
4n

)]
≥ 2 sin2

( π
4n

)
,

(3.A.5)
where we have used 2

√
pq ≤ 1 in the last inequality. □



CHAPTER 4

Mixing time of the asymmetric simple exclusion process in a
random environment

Abstract: We consider the simple exclusion process in the integer segment J1, NK with
k ≤ N/2 particles and spatially inhomogenous jumping rates. A particle at site x ∈ J1, NK
jumps to site x − 1 (if x ≥ 2) at rate 1 − ωx and to site x + 1 (if x ≤ N − 1) at rate ωx if
the target site is not occupied. The sequence ω = (ωx)x∈Z is chosen by IID sampling from a
probability law whose support is bounded away from zero and one (in other words the random
environment satisfies the uniform ellipticity condition). We further assume E[log ρ1] < 0 where
ρ1 := (1 − ω1)/ω1, which implies that our particles have a tendency to move to the right. We
prove that the mixing time of the exclusion process in this setup grows like a power of N . More
precisely, for the exclusion process with Nβ+o(1) particles where β ∈ [0, 1), we have in the large
N asymptotic

Nmax(1, 1λ ,β+
1
2λ)+o(1) ≤ tN,kmix ≤ NC+o(1)

where λ > 0 is such that E[ρλ1 ] = 1 (λ = ∞ if the equation has no positive root) and C is a
constant which depends on the distribution of ω. We conjecture that our lower bound is sharp
up to sub-polynomial correction.

1. Introduction

1.1. Overview. From the viewpoint of Probability and Statistical Mechanics, the simple
exclusion process is one of the simplest interacting particle system. It is a reasonable toy model
to describe the relaxation of a low density gas and we refer to [Lig12, Chapter VIII.6] for a
historical introduction. Its relaxation to equilibrium has been the object of extensive study
under a variety of perspective: Hydrodynamic limits [Ros81, KOV89, Rez91], Relaxation Time
[DSC93, Qua92] log-Sobolev inequalites [Yau97] and Mixing Time [BBHM05, Mor06] (the list of
references is very far from exhaustive).

All the above mentioned works are concerned with the exclusion in an homogeneous medium
and a small modification of this setup can lead to a drastic change of the pattern of relaxation,
see for instance [FGS16, FN17] (and references therein) for the phenomenology induced by the
change of the jump rate on a single bond. The disordered setup, where the jump rate of the
particles is random and varies in space fostered interest only more recently, see for instance
[Fag08, FRS19, Sch19].

In the present paper, we are interested in the case IID site disorder on a one dimensional
segment, in particular in the case where the local drift felt by particles has a non-constant sign.
For the system to reach equilibrium, individual particles need to travel on macroscopic distances
and in particular have to fight against drift in some regions. This phenomenon, also present in
the case of the random walk in a random environment [GK13, KKS75], induces a slower mixing
than in the constant nonzero bias case, as was proved in [Sch19]. Our objective is to quantify
further this slow down of the mixing time.

109
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In order to estimate the mixing time of the disordered exclusion process, we need to under-
stand in details how these regions with unfavorable drift – which we refer to as traps – affect the
pattern of relaxation to equilibrium. We make two important steps toward this objective:

• We prove that the mixing time grows at most like a power of N (the upper bound we
prove displays a non optimal exponent).

• We obtain a lower bound on the mixing time, which we conjecture to be optimal, and
which allows to identify, depending on the parameters of the system, which is the main
factor that slows down the mixing.

More precisely, our proof of the lower bound shows that the mixing time can be bounded from
below by three different mechanisms:

(i) Particles cannot move faster than ballistically, so that the mixing time is at least of
order N which is the length of the system.

(ii) The particles may remain trapped in potential wells which are created by the environ-
ment (see the definition 2.11), so that the mixing time is at least of order e∆V where
∆V is the height of the worse potential well in the system.

(iii) The potential wells also limit the flow of particles through the system which is at most
of order e−∆V/2. For this last reason, the mixing time is at least of order ke∆V/2 when
k is the number of particles in the system.

While the two first limitations (i) and (ii) follow from early studies of one dimensional random
walk in a random environment [KKS75] and have already been used to determine its mixing time
[GK13]. The third limitation is specific to systems with many particles, and to our knowledge,
had not been identified so far. It creates a third phase in the conjectured mixing time diagram
(see Figure 5).

1.2. The exclusion process in a random environment. Let us introduce formally the
random process whose study is the object of this paper. The exclusion process on the segment
J1, NK with k particles and 1 ≤ k ≤ N/2 is a Markov process that can informally be described
as follows.

(A) Each site is occupied by at most one particle (we refer to this constraint as the exclusion
rule). Therefore at all time there are k occupied sites and N − k empty sites.

(B) Each of the k particles performs a random walk on the segment, independently of the
others, except that any jump that violates the exclusion rule is cancelled.

More precisely, we want to consider the case exclusion process in a random environement where
the jump rates of the particles are specified by sampling an IID sequence of random variables
ω = (ωx)x∈Z, and the transition rates are given by

qωN (x, x+ 1) = ωx1{x≤N−1},

qωN (x, x− 1) = (1− ωx)1{x≥2},

qωN (x, y) = 0 if y /∈ {x− 1, x+ 1}.
(1.1)

The random walk with transitions qωN which corresponds to the case k = 1 is an extensively
studied process, usually referred to as Random Walk in a Random Environment (RWRE). The
RWRE on the full line Z was first studied by Solomon in [Sol75] who established a criterion for
recurrence/transience. The limit law of the random walk in a random environment is studied by
Kesten et al. in [KKS75] when the random walk is transient, and by Sinai in [Sin82] when the
random walk is recurrent (we refer to [Szn04, Zei04] for complete introductions to this research
field).

We are interested in the following quantitative question: How long does the system need
to relax to equilibrium, forgetting the information of its initial configuration in the sense of
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1 N0 N + 1

× ω1

x

1 − ωx × 1 − ωN ×

y

ωy1 − ωy ×1 − ωz

z

Figure 1. A graphical representation of the simple exclusion process in the segment J1, NK
and environment ω = (ωx)x∈Z: a bold circle represents a particle, and the number above every
arrow represents the jump rate while a red ”× ” represents an inadmissible jump.

total-variation distance? More precisely we are interested in the asymptotic in the limit when
k,N → ∞ of this total-variation mixing time. This question has been extensively studied in
the case where the sequence ω = (ωx)x∈Z is constant, which we refer to as the homogeneous
environment case:

(1) When ωx ≡ 1
2 , Wilson in [Wil04] showed that the system takes time of orderN2 logmin(k,

N − k) and later Lacoin in [Lac16b] proved that the lower bound in [Wil04] is sharp.
(2) When ωx ≡ p ̸= 1

2 , Benjamini et al. in [BBHM05] told that the system takes time of
order N , and later Labbé and Lacoin in [LL19] provided the exact constant.

(3) The case ωx ≡ pN = 1
2 + εN with limN→∞ εN = 0 is studied by Levins and Peres in

[LP16], Labbé and Lacoin in [LL20].

From the results mentioned above, for homogeneous environment the system takes time at
least of order N and most of order N2 logN to relax to equilibrium. However, when the sequence
ω = (ωx)x∈Z is chosen by independently sampling a nondegenerate common law, the system can
exhibit a very different behavior because the random environment can create wells of potential
which trap particles (see Equation (2.11) below for a definition of the potential associated to ω).

Gantert and Kochler has studied the mixing time problem when k = 1 (and transient envi-
ronment) in [GK13] for random environment and identified the mixing time, which is related with
the depth of the deepest trap and may be much larger than N2 logN . Schmid [Sch19] studied
the question in the case of a positive density of particles, when the environment is ballistic to
the right, (that is, when the random walk is transient with positive speed) and provided bounds
for the mixing time, showing in particular that the mixing time is of order larger than N as
soon as the local drift (which is equal to 2ωx − 1) is not uniformly bounded from below by a
positive constant and is larger than N1+δ for some δ > 0 when some sites can display negative
drift (P[ωx < 1/2] > 0).

In our study we focus on the case of random environments which are such that the random
walk is transient (the case of recurrent environment is quite different and should be considered
separately). In that setup, the results in [Sch19] leave several questions open, among which the
following ones:

(A) Is the mixing time always bounded from above by a power of N?
(B) If this is the case, for the exclusion process with kN = Nβ particles and β ∈ (0, 1), can

one identify an exponent ν > 0 (depending on β and the distribution) which is such
that the mixing time is of order Nν?

We provide a positive answer to question (A) by proving an upper bound on the mixing time
which grows like a power of N . This upper bound is achieved by using a censoring procedure
which allows to transport particles one by one to their equilibrium positions. Concerning question
(B), we provide a new lower bound on the mixing time which we believe to be optimal and provide
a conjecture concerning the value of ν. The bound is based on an analysis of the effect of the
deepest trap on the particle flow through the system. Significant technical obstacles prevented
us from obtaining a matching upper bound.
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2. Model and result

2.1. An introduction to Random Walk in a Random Environment ω. Let us briefly
recall the definition for random walk in a random environment. Given ω = (ωx)x∈Z a sequence
with values in (0, 1), the random walk in the environment ω is the continuous time Markov chain
on Z whose transition rates are given by

qω(x, x+ 1) = ωx,

qω(x, x− 1) = 1− ωx,

qω(x, y) = 0 if |x− y| ≠ 1.

(2.1)

We let (Xt)t≥0 denote the random walk in environment ω and initial condition 0 (we let Qω
denote the corresponding law). This process has been extensively studied in the case where
ω = (ωx)x∈Z is (the fixed realization of) a sequence of IID random variables (we will use P and E
denote the associated law and expectation respectively), and we refer to [Szn04, Zei04] for recent
reviews.

Simple criteria have been derived on the distribution of ω as necessary and/or sufficient
conditions for recurrence/transience, ballisticity etc... Even though most of the results are valid
in a more general setup, for the sake of simplicity let us assume in the discussion that the variables
(ωx)x∈Z are bounded away from 0 and 1, that is, for some α ∈ (0, 1/2) we have

P(ω1 ∈ [α, 1− α]) = 1. (2.2)

Setting ρx := (1− ωx)/ωx, it has been proved in [Sol75] that{
E[log ρ1] = 0 ⇒ Xt is reccurent under Qω , P-a.s.,
E[log ρ1] ̸= 0 ⇒ Xt is transient under Qω , P-a.s.

(2.3)

More precisely in the second case we have with probability one limt→∞Xt = ∞ (resp. −∞) if
E[log ρ1] < 0 (resp. E[log ρ1] > 0).

When transience holds, the rate at which Xt goes to infinity has also been identified in [KKS75].
It can be expressed in terms of a simple parameter of the distribution ω, yielding in particular
a necessary and sufficient condition for ballisticity. Let us assume that E[log ρ1] < 0, and set

λ = λP := inf{s > 0,E[ρs1] ≥ 1} ∈ (0,∞].

It has been proved in [KKS75] that if λ > 1 then there exists ϑP > 0 such that

lim
t→∞

Xt

t
= ϑ (2.4)

and that if λ ∈ (0, 1] then

lim
t→∞

log(Xt)

log t
= λ. (2.5)

2.2. The Simple Exclusion process in an environment ω.
Definition. Given a sequence ω = (ωx)x∈Z taking values in (0, 1), N ≥ 2 and 1 ≤ k ≤ N − 1,

the simple exclusion process in a random environment on the line segment J1, NK (we use the
notation Ja, bK := [a, b] ∩ Z) with k particles is a Markov process on the space

ΩN,k :=

{
ξ ∈ {0, 1}N :

N∑
x=1

ξ(x) = k

}
. (2.6)

The 1s’ are denoting particles while 0s’ correspond to empty sites. It can be informally described
as follows: each of the k particles performs independently a random walk with transitions given
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by qω in (2.1), with the constraints that particles must remain in the segment and each site can
be occupied by at most one particle. All transitions that would make this constraint violated
(that is, a particle tries to jump either on 0, N + 1 or an already occupied site) are cancelled.

More formally we let ξx,y is the configuration obtained by swapping the values of ξ at sites
x and y of the configuration ξ, more formally defined by

∀z ∈ J1, NK, ξx,y(z) = ξ(z)1J1,NK\{x,y} + ξ(x)1{y} + ξ(y)1{x}. (2.7)

The simple exclusion process in environment ω is the Markov process with transition rates given
by

rω(ξ, ξx,x+1) :=

{
ωx if ξ(x) = 1 and ξ(x+ 1) = 0,

1− ωx+1 if ξ(x+ 1) = 1 and ξ(x) = 0,
for x ∈ J1, N − 1K

rω(ξ, ξ′) := 0 in all other cases.

(2.8)

Equivalently the generator of the process is defined for f : ΩN,k → R by

LωN,k(f)(ξ) :=
N−1∑
x=1

rω(ξ, ξx,x+1)
[
f(ξx,x+1)− f(ξ)

]
. (2.9)

The chain is ergodic and reversible. In order to give a simple compact expression for the equilib-
rium measure, let us introduce the random potential V ω : N → R defined as follows, V ω(1) := 0
and for x ≥ 2

V ω(x) :=
x∑
y=2

log

(
1− ωy
ωy−1

)
. (2.10)

With a small abuse of notation, we extend V ω to a function of ΩN,k. This extension is obtained
by summing the value of V ω among the positions of the particles in the configuration ξ:

V ω(ξ) :=
N∑
x=1

V ω(x)ξ(x). (2.11)

We consider the probability measure πωN,k defined by

πωN,k(ξ) :=
1

ZωN,k
e−V

ω(ξ) with ZωN,k =
∑

ξ∈ΩN,k

e−V
ω(ξ). (2.12)

It is immediate to check by inspection that πωN,k satisfies the detailed balance condition for LωN,k,
and thus that it is the unique invariant probability measure on ΩN,k.

If ξ ∈ ΩN,k, we let (σξt )t≥0 denote the Markov chain with initial condition ξ. We are going
to provide a construction (σξt )t≥0 for all ξ ∈ ΩN,k on a common probability space in Section
3.2, and we use P and E for the corresponding probability law and expectation respectively.
We let (Pt)t≥0 (the dependence in ω, N , k is omitted in the notation to keep it light) denote
the corresponding Markov semi-group and set P ξt := P(σξt ∈ ·) = Pt(ξ, ·) to be the marginal
distribution of (σξt )t≥0 at time t.

Mixing time and spectral gap. In a standard fashion, we set the total variation-distance to
equilibrium at time t to be

dωN,k(t) := max
ξ∈ΩN,k

∥P ξt − πωN,k∥TV (2.13)
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where ∥ν1 − ν2∥TV := supA⊂ΩN,k
|ν1(A)− ν2(A)| denotes the total variation between two proba-

bility measures ν1, ν2 on ΩN,k. Since the Markov chain is irreducible, we know that (cf. [LP17,
Theorem 4.9])

lim
t→∞

dωN,k(t) = 0. (2.14)

We are interested in having quantitative statements related to the convergence (2.14), and for
this reason we want to evaluate the mixing time and spectral gap of the chain (see [LP17] for a
motivated and thorough introduction to these notions). For ϵ ∈ (0, 1), let the ε-mixing time of
the chain be defined by

tN,k,ωmix (ϵ) := inf
{
t ≥ 0 : dωN,k(t) ≤ ϵ

}
. (2.15)

By convention, we simply write tN,k,ωmix when ε = 1/4. The spectral gap of the chain gapωN,k, in
our context, can be defined as the smallest non-zero eigenvalue of −LωN,k. It can be shown using
a spectral decomposition (see for instance [LP17, Corollary 12.7]) to determine the asymptotic
rate of convergence of dωN,k as

lim
t→∞

1

t
log dωN,k(t) = −gapωN,k. (2.16)

The mixing time and spectral gap are related to one another by the following relation valid for
ε ∈ (0, 1/2) (cf. [LP17, Theorems 12.4 and 12.5])

1

gapωN,k
log

(
1

2ε

)
≤ tN,k,ωmix (ϵ) ≤ 1

gapωN,k
log

(
1

επmin

)
(2.17)

where
πmin = min

ξ∈ΩN,k

πωN,k(ξ).

2.3. Results. The main object of the chapter is the study of the exclusion process in an IID
environment. On the way to our main result, we also prove bounds on the mixing time which
are valid for any realization of ω, and which we present first.

Universal bounds for the mixing time on the exclusion process. We assume without loss of
generality (by symmetry) that k ≤ N/2. We prove that the mixing time grows at least linearly
with the size of the system and at most exponentially. Both results are in a sense optimal (see
the discussion in Section 2.4. below).

Proposition 2.1. For any k ∈ J1, N/2K and N ≥ 2, for any (ωx)x∈Z we have

tN,k,ωmix ≥ 1

16
N. (2.18)

Furthermore, if kN is a sequence such that

kN ≤ N/2 and lim
N→∞

kN = ∞, (2.19)

we have for any ε > 0, for N ≥ N0(ε) sufficiently large for any (ωx)x∈Z

tN,kN ,ωmix (1− ε) ≥ 1

30
N. (2.20)

For the upper bound, we require an assumption similar to (2.2), that is

∀x ∈ Z, ωx ∈ [α, 1− α]. (2.21)
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Proposition 2.2. For any sequence (ωx)x∈Z satisfying (2.21) all N ≥ 2 and all k ∈ J1, N/2K,
we have

gapωN,k ≥ αN−2|ΩN,k|−1

(
1− α

α

)−N/2
, (2.22)

and as a consequence for all ε ∈ (0, 1/2)

tN,k,ωmix (ε) ≤ α−1N2|ΩN,k|
(
1− α

α

)N/2(
log |ΩN,k|+Nk log

1− α

α
− log ε

)
. (2.23)

Mixing time for the exclusion process in a random environment. Let us now introduce our
main results concerning the exclusion process in a random environment. We assume that (2.2)
holds,

E[log ρ1] < 0 and 1 ≤ k ≤ N/2. (2.24)
Using the various symmetries of the the system (between left and right, particles and empty
sites...), assumption (2.24) entails almost no-loss of generality, and the only case being left aside
is that of a recurrent environment (that is E[log ρ1] = 0). We are also going to consider that
λP <∞, this corresponds to saying that P[ ω1 < 1/2] > 0 (the case P[ ω1 ≥ 1/2] = 1 is discussed
in the next section).

In order to bet a better intuition on the result, let us provide a description of the equilibrium
measure. We introduce the event Ar ⊂ ΩN,k that the leftmost particle and rightmost empty site
are at a distance smaller than 2r of their respective maximal and minimal possible values:

Ar := {ξ ∈ ΩN,k : ∀x ∈ J1, N − k − rK, ξ(x) = 0 ; ∀x ≥ N − k + r, ξ(x) = 1} . (2.25)

The following result tells us that the mass of πN,kN is essentially concentrated at a finite distance
of the configuration ξmax with all k particles packed to the right (see (3.3)).

Lemma 2.3. Under the assumptions (2.21) and (2.24), for all N sufficiently large we have

lim
r→∞

inf
N≥1

k∈J1,N/2K

E
[
πωN,kN (Ar)

]
= 1. (2.26)

Our first main result is that if the environment satisfies the assumptions (2.2) and (2.24),
the system relaxes to equilibrium in polynomial time, or in other words that tN,k,ωmix grows like
a power of N with an explicit upper bound on the growth exponent. In order to describe our
explicit bound, we need to introduce the function F which is the log-Laplace transform of log ρ1
that is

F (u) := logE [ρu1 ] . (2.27)
Since V ω is, up to a small modification, a sum of IID variables with the same distribution

u

F

λ0

Figure 2. A graphical description of the function F (u) with only two zeros at u = 0 and u = λ.

as log ρ1, the function F is used to compute the large deviations of V ω, and in particular to
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determine the geometry of the deepest potential wells. It is strictly convex and satisfies F (0) =
F (λ) = 0 (see Figure 2). We let u0 be defined by

F (u0) = min
u∈R

F (u) < 0.

Given a sequence of events (AN )N≥1, we say that AN holds with high probability (which we
sometimes abbreviate as w.h.p.) if limN→∞ P [AN ] = 1. Given a sequence (BN,k)N≥1,k∈J1,N/2K,
we say that BN,k holds with high probability if

lim
N→∞

inf
k∈J1,N/2K

P [BN,k] = 1.

We are now ready to state the result.

Theorem 2.4. Under the assumptions (2.2) and(2.24), then with high probability we have

tN,k,ωmix ≤ 80kNα−1

(
3u0 + 2

|F (u0)|
logN

)4

N
3u0+2
|F (u0)|

(2 log 1−α
α

+4 log 4−3 log 3). (2.28)

Our second result provides a lower bound for the mixing time which depends both on N and k.

Theorem 2.5. Under the assumptions (2.2)-(2.24) and assuming further that λP <∞, there
exists a positive constant c(α,P) such that w.h.p. we have for every N and k ∈ J1, N/2K

tN,k,ωmix ≥ cmax
{
N,N

1
λ (logN)−

2
λ , kN

1
2λ (logN)−2(1+ 1

λ
)
}
. (2.29)

2.4. Related work. Let us provide now a short review of related results present in the
literature.

Mixing time for the exclusion process in a homogeneous environment. The mixing time of
the exclusion process on the line segment has been extensively studied in the case where the
sequence ω is constant, i.e. ω ≡ p. In that case, not only the right order of magnitude has
been identified for the mixing time, but also the sharp asymptotic equivalent. The case of the
exclusion with no bias that is p = 1/2 (the simple symmetric exclusion process), it was shown in
[Ald83a] that the mixing time for the exclusion process on the segment is of order at least N2

and at most N2(logN)2. It was later established (see [Wil04] for the lower bound and [Lac16b]
for the upper bound) that if kN satisfies (2.19), we have

tN,kNmix (ε) =
(1 + o(1))

π2
N2 log kN . (2.30)

In the case where the walk presents a bias, that is p ̸= 1/2, it was shown in [BBHM05] that the
mixing time is of order N . This result was refined in [LL19] by identifying the proportionality
constant, showing that if kN satisfies limN→∞ kN/N = θ, then

tN,kNmix (ε) = [1 + o(1)]
(
√
θ +

√
1− θ)2

|2p− 1|
N. (2.31)

The case where p is allowed to depend on N was investigated in [LP16, LL20] where the order
of magnitude and the sharp asymptotic of the mixing time were respectively determined. Note
that in (2.30) and (2.31) the asymptotic behavior of tN,kNmix (ε) does not display any dependence
on ε at first order. This implies that dN,kN (t) abruptly drops from 1 to 0 on the time scale
N2 log kN and N respectively. This phenomenon, called cutoff, is expected to hold for a large
class of Markov chains, we refer to [LP17, Chapter 18] for an introduction.

Let us also mention that the mixing time for the one-dimensional exclusion process has also
been investigated for a variety of different boundary conditions. We refer to [Lac16a] for a sharp
estimate of the convergence profile to equilibrium for the periodic boundary condition in the
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symmetric case and to [GNS20] (and references therein) for the study of a variety of boundary
conditions, with or without bias. The case of higher dimension has also been considered, see e.g.
[Mor06] where the order of magnitude of the mixing time is determined up to a constant.

Mixing time for the random walk in a random environment. In [GK13], the case of the mixing
time for a random walk in the segment with a transient random environment (which corresponds
to the case k = 1 in the present chapter) was investigated. It is shown that whenever λP > 1
then

tN,1,ωmix (ε) = [1 + o(1)]
N

E [Qω[Tω1 ]]
, (2.32)

where Tω1 is the first hitting time of 1 for the random walk in a random environment ω starting
from 0 (the result in [GK13] is slightly more precise and the assumption is more general than
(2.2)). When λP < 1, it is shown that the mixing time is of a much larger magnitude but that
cutoff does not hold. More precisely, for λP ≤ 1 we have

lim
N→∞

log tN,1,ωmix (ε)

logN
=

1

λP
. (2.33)

The asymptotic N1/λP+o(1) corresponds to the time that is required to overcome the largest
potential barrier present in the system, whose height is of order (1/λ) logN .

Mixing time for the exclusion in a ballistic environment. In [Sch19], the mixing time tN,kN ,ωmix
were investigated under the assumption that limN→∞ kN/N = θ ∈ (0, 1/2] and λP > 1. Three
different cases are considered.

• When ess inf ω1 > 1/2, it is shown that the mixing tN,kN ,ωmix is of order N , by a simple
comparison with the case of homogeneous asymmetric environment.

• When ess inf ω1 < 1/2, it is shown that there exists a positive δ such that the mixing
time satisfies tN,kN ,ωmix ≥ N1+δ.

• When ess inf ω1 = 1/2, it is shown that

lim inf
N→∞

tN,kN ,ωmix (ε)/N = ∞ and tN,kN ,ωmix (ε) ≤ CN(logN)3, (2.34)

together with a quantitative lower bound if P[ω1 = 1/2] > 0.
Other perspectives concerning the exclusion process and random environments. The exclusion

process with other types of random environment has also been considered in the literature.
One possibility is to consider a random environment on bonds instead of sites. A particular
choice which makes the uniform measure on Z reversible for the random walk is the model of
random conductance. In that case the mixing property of the system strongly differs from model
considered here: the equilibrium measure is uniform on ΩN,k so that there is no trapping by
potential. It is expected that for a large class of environment in that case the mixing properties
are very similar to that of the homogeneous system. The hydrodynamic limit of exclusion
processes with bond–dependent random transition rates have been studied in [Fag08, Jar11] (see
also [Fag20] for a recent work going slightly beyond the random conductance model).

Another corpus of work has been considering the (homogeneous) exclusion process itself as a
dynamical random environment, which determines the transition probability of the random walk.
The asymptotic behavior of a random walker in this setup is studied in [HKT20, HS15], and the
hydrodynamic limit for the exclusion process as seen by this walker is studied in [AFJV15]. In
a more general setup for the jump rates of the walker, an invariance principle about the random
walk when the exclusion process starts from equilibrium is studied in [JM20].

2.5. Interpretation of our results and conjectures.
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Comments on Propositions 2.1 and 2.2. The asymptotic for the mixing time for ASEP in
homogeneous environment (2.31) shows that the lower bound of Proposition 2.1 is sharp up to a
constant factor. An important observation is also that (2.20) is not true without the assumption
that kN goes to infinity, even if 1/30 is replaced by an arbitrarily small constant provided that
it is not allowed to depend on ε.

However the constant in our bounds (2.18) and (2.20) are clearly not optimal. Let us state
now a natural conjecture. We believe that if limN→∞ kN/N = θ ∈ (0, 1/2], and ωx ∈ [α, 1 − α]
for all x ∈ Z (with the possibility of having α = 0) then we should have

lim inf
N→∞

1

N
tN,kNmix (1− ε) ≥ (

√
θ +

√
1− θ)2

1− 2α
. (2.35)

One can obtain counter examples to (2.35) in the zero density case by considering the case
ωx = 1− α in the first half of the segment J1, NK and ω = α in the second half of the segment,
and kN diverging to infinity such that limN→∞ kN/(logN) = 0. In that case, one can with some
minor efforts, show that the mixing time is asymptotically equivalent N

2−4α (which is half of the
lower bound in (2.35)).

Proposition 2.2 can also be shown to be sharp within constant in the sense that there exists
a constant Cα, and for given N and k it is always possible to construct an environment ω such
that

gapωN,k ≥ e−CαN . (2.36)
We conjecture that the best possible lower bound on the spectral gap when limN→∞ kN/(logN) =
θ ∈ (0, 1/2] is the following

lim inf
N→∞

log gapωN,kN
N

= −(1− θ)

2
log

(
1− α

α

)
. (2.37)

The lim inf is reached asymptotically by the environment{
ωx = α if 1 ≤ x ≤ (1−θ)N

2 ,

ωx = 1− α if (1−θ)N
2 < x ≤ N.

(2.38)

Comments on Theorems 2.4 and 2.4. Our chapter brings a complement to the results in
[Sch19], in the case when ess inf ω1 < 1/2. Firstly it provides a complementary upper bound
result, which shows that the mixing time in transient environment always scales like a power of
N , even in the non-ballistic case λP ≤ 1.

Secondly, it provides a more quantitative lower bound. In (2.29) the mixing time is bounded
by the maximum of three quantities. Each of them corresponds to a different mechanism which
prevents the mixing time to be lower than a certain value.

• Mass transport cannot be faster than ballistic: Which is explored in Proposition 2.1 is
that particle cannot move faster than ballistically (and this is independent of the choice
of ω), so that the time required to transport the mass of particles to equilibrium has to
be at least of order N . This idea is already present in [BBHM05].

• Individual particles may be blocked by traps in the potential profile: As soon as ess inf ω1 <
1/2, the potential profile V is non-monotone and will create energy barriers. It is known
since [KKS75] that these energy barriers can slow down particles to subballistic speed
in λP ≤ 1 by creating traps that will require a long time to be crossed. This is the
mechanism that was used to identify the mixing time in case of a single particle in
[GK13] (recall (2.33)), and it corresponds to the time needed to cross the largest trap
in the potential. This yields the second term in (2.29).
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• Potential barrier may also create bottleneck for the flow of particles: The third mech-
anism which was partially identified in [Sch19] is that potential barrier may also limit
the flow of particles throughout the system. The limitation on the flow does not corre-
spond to the inverse of the time that a particle needs to cross the trap, but rather to
the square root of this inverse. The reason for this is that when particles are flowing
through the system, the particle are “filling” half of the potential well, so that the re-
maining potential barrier to be crossed is halved. This reasoning yields the third term
in (2.29).

We believe that the three mechanism described above are the only possible limiting factor
to mixing, and thus that the lower bound give in Theorem 2.5 is sharp as far as the exponent is
concerned. Let us formulate this as a conjecture. Let us assume that kN satisfies

lim
N→∞

log kN
logN

= β,

and then we should have the following convergence w.h.p.

lim
N→∞

tN,kNmix

logN
= max

(
1,

1

λ
,
1

2λ
+ β

)
. (2.39)

We refer to Figure 3 for the phase diagram concerning the conjectured exponent of the mixing
time.

0 1 2 3

1
β−axis

1
λ−axis

1
2

max
(
1, 1

λ , 1
2λ + β

)
= 1

Ballistic begime

max
(
1, 1

λ , 1
2λ + β

)
= 1

λ

One particle limitation

max
(
1, 1

λ , 1
2λ + β

)
= 1

2λ + β

Flow limitation

Figure 3. The phase diagram for the exponent of the mixing time (the lower bound is proved
rigorously and the upper bound is only conjectured). The transition between the blue and red
(hatched) regions of the diagram corresponds to the transition of the RWRE from the ballistic
phase to the transient-with-zero-speed phase. A third phase represented by the white region
appears when one considers a large number of particles, in this phase the main limitation to
mixing is the flow of particle through the deepest trap.

In particular this means that when β ≤ 1/(2λ) then the mixing time of the exclusion process
on the segment coincides (as far as the exponent is concerned) with that of the random walk in
the segment.

Organization of the chapter. Section 3 is devoted to some technical preliminaries includ-
ing the particle description, equilibrium estimates, partial order, a graphical construction and a
composed censoring inequality.

Section 4 is devoted to universal lower and upper bounds on the mixing time for all random
environments, that is, the proof of Propositions 2.1 and Proposition 2.2.

Section 5 is devoted to lower bounds on the mixing time, that is Theorem 2.5. There are three
bounds to prove, one of them is a consequence of Proposition 2.1, the other two are presented
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as two distinct results (Proposition 5.1 and Proposition 5.2) and proved in separate subsections.
The first bound rely on controlling the displacement of the leftmost particle while the other is
based on a control of the particle flow.

Section 6 is concerned with the upper bound on the mixing time (Theorem 2.4). The proof
is based on application of the censoring inequality and of our upper bound from Proposition
2.2: blocking the transition along carefully chosen edges (in a way that varies throught time) we
guide all particlesto the right of the segment (where they are typically located at equilibrium)
in polynomial time.

Notation. We use c(α,P) and C(α,P) to stress that the constants c and C depend on α
and the law of the random environment ω. Moreover, we use “ := ” (or “ =: ”) to define a new
quantity on the left-hand (right-hand, resp.) side, and Ja, bK := [a, b] ∩ Z. Furthermore, we let

Ω[a,b],k :=

ξ ∈ {0, 1}Ja,bK :
∑

x∈Ja,bK

ξ(x) = k

 (2.40)

denote the state space of k particles performing exclusion process restricted in the interval Ja, bK
and environment ω, and let πω[a,b],k denote the corresponding equilibrium probability measure.

3. Technical preliminaries

3.1. Partial order on ΩN,k. Given ξ ∈ ΩN,k we define ξ̄ : J1, kK → J1, NK as an increasing
function which provides the positions of the particles of ξ from left to right:

{ξ̄(i) = x} ⇐⇒

ξ(x) = 1 and
x∑
y=1

ξ(x) = i

 . (3.1)

We introduce a natural partial order relation “≤” on ΩN,k × ΩN,k as follows

(ξ ≤ η) ⇔
(
∀i ∈ J1, kK, ξ̄(i) ≤ η̄(i)

)
. (3.2)

Informally ξ ≤ η means that the particles in the configuration η are located “more to the
right” than those of ξ. Let ξmax and ξmin denote the maximal and minimal configurations of
(ΩN,k, “ ≤ ”) respectively, given by

ξmax := 1{N−k+1≤x≤N} and ξmin := 1{1≤x≤k}. (3.3)

This order plays a special role for our dynamic (σξt )t≥0, and the next two subsections provide
tools to exploit this link.

3.2. Canonical coupling via graphical construction. Let us present a construction of
a grand coupling for the exclusion process on the segment J1, NK which has the property of
conserving the order defined above.

To each site x ∈ J1, NK we associate an independent rate 1 Poisson clock process (T
(x)
i )i≥1

(the increments of the sequence (T
(x)
i )i≥1 are independent exponential variables of parameter

1) and an independent sequence of IID variables (U
(x)
i )i≥1 with uniform distribution on [0, 1].

These variables are independent of the environment ω = (ωx)x∈Z, and the trajectory (σξt )t≥0 for
each ξ is a deterministic function of (T

(x)
i , U

(x)
i )i≥1,x∈J1,NK. In the remainder of the paper, P

denote the joint law of (T (x)
i , U

(x)
i )i≥1,x∈J1,NK, and E denotes the corresponding expectation. Let

us also introduce a natural filtration (Ft)t≥0 in this probability space setting

i0(x, t) := max{i ≥ 1 : T
(x)
i ≤ t} (3.4)
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with the convention that max ∅ = 0 and set

Ft := σ
(
T
(x)
i , U

(x)
i , x ∈ Z, i ≤ i0(x, t)

)
. (3.5)

Now, given 1 ≤ k ≤ N − 1 and an initial configuration ξ ∈ ΩN,k, we construct the trajectory
(σξt )t≥0 as follows:

(1) (σξt )t≥0 is càdlàg and may change its value only at times T (x)
i , x ∈ J1, NK and i ≥ 1.

(2) We construct the trajectory starting with σξ0 = ξ and modifying it sequentially at the
update times (T (x)

i )i≥1,x∈J1,NK. For instance if t = T
(x)
i we obtain σξt− from σξt as follows:

(A) If U (x)
i ≤ ωx, x ≤ N − 1, σξt−(x) = 1 and σξt−(x + 1) = 0, then σξt (x + 1) = 1 and

σξt (x) = 0 (and σξt (y) = σξt−(y) for y /∈ {x, x+ 1}).
(B) If U (x)

i > ωx, x ≥ 2, σξt−(x) = 1 and σξt−(x − 1) = 0, then σξt (x − 1) = 1 and
σξt (x) = 0 (and σξt (y) = σξt−(y) for y /∈ {x− 1, x}).

(C) In all other cases σξt = σξt− .
It is immediate by inspection to check that the above construction corresponds indeed to

the Markov chain with generator LωN,k. Note also that our process is adapted and Markov with
respect to the filtration (Ft)t≥0. In the same manner, the reader can check that it preserves the
order in the following sense.

Proposition 3.1. For the coupling constructed above, we have for all ξ, ξ′ ∈ ΩN,k

ξ ≤ ξ′ ⇒ P
[
∀t ≥ 0, σξt ≤ σξ

′

t

]
= 1. (3.6)

3.3. Composed censoring inequality. We are going to use a variant of the censoring
inequality introduced by Peres and Winckler [PW13]. Let EN = {{n, n+ 1} : n ∈ J1, N − 1K}
be the set of edges in J1, NK, and a censoring scheme C : [0,∞) → P(EN ) is a deterministic
càdlàg function where P(EN ) is the set of all subsets of EN .

The censored chain (σξ,Ct )t≥0 is a time inhomegenous Markov chain, with a generator obtained
by cancelling the transition using edges in C(t)

LC,t
N,k(f)(ξ) :=

N−1∑
x=1

rωN,k(ξ, ξ
x,x+1)1{{x,x+1}/∈C(t)}

[
f(ξx,x+1)− f(ξ)

]
, (3.7)

where rωN,k(ξ, ξ
x,x+1) is defined in (2.8). We let P C

t be the associated semigroup (the solution of
∂tPt = PtLC,t

N,k with initial condition given by the identity). We will use the following corollary
of the censoring inequality [PW13, Theorem 1] (recall (3.3)).

Proposition 3.2. For any ξ ∈ ΩN,k and any censoring scheme C, we have

Pt(ξ, ξmax) ≥ P C
t (ξmin, ξmax) (3.8)

Sketch of proof. Proposition 3.1 implies that Pt(ξ, ξmax) ≥ Pt(ξmin, ξmax). To compare
Pt(ξmin, ξmax) with P C

t (ξmin, ξmax), we rely on the censoring inequality [PW13, Theorem 1] (to see
that the exclusion process fits the setup in [PW13], one uses the height function representation
see e.g. [Lac16b, Section A.2]) which implies that Pt(ξmin, ·) stochastically dominates P C

t (ξmin, ·).
□

We consider a modified censored dynamics, where on top of censoring, at fixed time, we
replace the current configuration by one which is lower for the order ≥ by moving some particles
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to the left. For the application we have in mind, we can consider that these replacements are
performed deterministically (although the result would hold also for random replacements).

Let (si)
I
i=1 be an increasing time sequence tending to infinity and let (Qi)

I
i=1 be a sequence

of stochastic matrices on ΩN,k such that for all ξ in ΩN,k there exists ξ′ (depending on ξ and i)
such that 

ξ′ ≤ ξ,

Qi(ξ, ξ
′) = 1,

Qi(ξ, ξ
′′) = 0, when ξ′′ ̸= ξ′.

(3.9)

We consider P̃t the semigroup defined by
P̃0 = Id,

∂tP̃t = P̃tLC,t if t /∈ {si}Ii=1,

P̃si = P̃(si)−Qi.

(3.10)

Proposition 3.3. For any choice of (si)Ii=1, (Qi)
I
i=1 and C, we have for all t ≥ 0

P C
t (ξmin, ξmax) ≥ P̃t(ξmin, ξmax). (3.11)

Proof. We construct both (σ̃min
t )t≥0 with transition probability P̃t with initial condition

ξmin and (σmin,C
t )t≥0 the censored dynamics with the same initial condition on the same proba-

bility space, using the variables (T
(x)
i , U

(x)
i )i≥1,x∈J1,NK.

For (σmin,C
t )t≥0 we use the same procedure as for (σξt )t≥0 (for ξ = ξmin) with the following

added requirement for the transitions: {x, x+ 1} /∈ C(t) in the case (A) and {x, x− 1} /∈ C(t) in
the case (B).

For (σ̃min
t )t≥0 we use the same procedure as for (σmin,C

t )t≥0 but with the addition of new de-
terministic jumps in the trajectories at times (si)i∈I . More precisely if t = si, σ̃min

t is determined
from σ̃min

t− as the unique element of ΩN,k such that

Qi(σ̃
min
t− , σ̃min

t ) = 1. (3.12)

We have by definition σ̃min
0 = σmin,C

0 , and it can be checked by inspection that all the transitions
are order preserving (this is a property of the graphical construction when t /∈ {si}Ii=1 and a
consequence of (3.9) for the special values t ∈ {si}Ii=1).

□

3.4. Equilibrium estimates. Recalling (2.27) let us define

κ := F ′(λ) = E
[
ρλ1 log(ρ1)

]
> 0, (3.13)

and set
∆V ω,N

max = max
1≤x≤y≤N

(V (y)− V (x)) . (3.14)

The literature on the subject of random walks in a random environment contains very sharp
information concerning ∆V ω,N

max , and the length of the corresponding trap (see [GK13]). In
particular it is known under quite general assumptions that |∆V ω,N

max − 1
λ logN | displays random

fluctuations of order 1 and that the corresponding traps are of a length 1
λκ logN at first order.

For the sake of completeness we include a short proof of the following non-optimal result
which is sufficient to our purpose. Set

qN :=
3u0 + 2

|F (u0)|
logN, (3.15)
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where u0 is the point at which F attains its minimum.

Proposition 3.4. We have

lim
N→∞

P
[
−
(
1 + ε

λ

)
log logN ≤ ∆V ω,N

max − 1

λ
logN ≤ ε

λ
log logN

]
= 1. (3.16)

Furthermore we have

lim
N→∞

P

 max
1≤x≤y≤N
y−x≥qN

(V (y)− V (x)) ≥ −3 logN

 = 0. (3.17)

In particular, with high probability we have

∀x, y ∈ J1, NK,
{
V (y)− V (x) = ∆V ω,N

max

}
⇒ {(y − x) ≤ qN} .

Proof. At the cost of an additive constant on our bounds (which we omit in the proof for
readability), using our uniform ellipticity assumption we can replace V (y)−V (x) in the definition
of (3.14) by a sum of IID random variables, setting V̄ (1) = 0 and

y∑
z=x+1

log ρz := V̄ (y)− V̄ (x). (3.18)

By definition of λ, Mn =
(∏n

x=1(ρx)
λ
)
n≥1

is a martingale for the filtration Gn := σ(ωx, x ∈
J1, nK). Using the optional stopping theorem at TA := inf{n,Mn ≥ A} and using that{

A ≤MTA ≤ A
(
1−α
α

)λ
,

limn→∞Mn = 0,
(3.19)

we have for any A

1

A

(
α

1− α

)λ
≤ P

[
max
n≥1

n∏
x=1

(ρx)
λ ≥ A

]
≤ 1

A
. (3.20)

The bound above can be used to obtain the upper bound on ∆V ω,N
max via a union bound using

translation invariance

P
[

max
1≤x≤y≤N

V̄ (y)− V̄ (x) ≥ 1

λ
logN +

ε

λ
log logN

]
≤

N∑
x=1

P
[
max
y≥x

V̄ (y)− V̄ (x) ≥ 1

λ
logN +

ε

λ
log logN

]

≤ NP

[
max
n≥1

n∏
x=1

(ρx)
λ ≥ N(logN)ε

]
≤ (logN)−ε. (3.21)

Before proving the corresponding lower bound, let us move to the proof of (3.17). Again using
translation invariance and union bound, it is sufficient to show that

lim
N→∞

NP

[
max
n≥qN

n∑
x=1

log ρx ≥ −3 logN

]
= 0. (3.22)
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We use Doob’s maximal inequality for the martingale e−nF (u0)
∏n
x=1(ρx)

u0 . Since F (u0) < 0, we
have

P

[
max
n≥qN

n∏
x=1

(ρx)
u0 ≥ N−3u0

]
≤ P

[
max
n≥1

e−nF (u0)
n∏
x=1

(ρx)
u0 ≥ N−3u0e−qNF (u0)

]
≤ N3u0eqNF (u0) ≤ N−2. (3.23)

This is sufficient to conclude the proof of (3.17). Note that as a consequence by (3.20) and (3.23),
we have for N sufficiently large

P

[
max

1≤n≤qN

n∏
x=1

(ρx)
λ ≥ N(logN)−(1+ε)

]
≥ 1

2

(
α

1− α

)λ
N−1(logN)1+ε. (3.24)

As a consequence of independence we have

P
[
∀(i, j) ∈ J1, ⌊N/qN⌋ − 1K × J1, qN K, V̄ (iqN + j)− V̄ (iqN ) ≤

logN − (1 + ε) log logN

λ

]

≤

(
1− 1

2

(
α

1− α

)λ
N−1(logN)(1+ε)

)⌊N/qN ⌋−1

≤ e−c(logN)ε (3.25)

This yields the lower bound in (3.16).
□

Proof of Lemma 2.3. For ξ ∈ ΩN,k, we define the positions of its leftmost particle and
rightmost empty site to be respectively

LN,k(ξ) := inf {x ∈ J1, NK : ξ(x) = 1} ,
RN,k(ξ) := sup {x ∈ J1, NK : ξ(x) = 0} .

(3.26)

Then
πωN,k

(
A∁
r

)
≤ πωN,k (LN,k(ξ) ≤ N − k − r) + πωN,k (RN,k(ξ) ≥ N − k + r) .

Let us bound the second term, the first one can be treated in a symmetric manner. Moreover,
we have

πωN,k (RN,k(ξ) ≥ N − k + r) =
∑

x∈J1,N−kK
y∈JN−k+r,NK

πωN,k (LN,k = x,RN,k = y) (3.27)

Furthermore, we recall that ξx,y, defined in (2.7), denotes the configuration obtained by swapping
the values at sites x, y of the configuration ξ, and observe that the map ξ → ξx,y is injective from
{ξ ∈ ΩN,k : LN,k(ξ) = x,RN,k(ξ) = y} to ΩN,k defined by ξ 7→ ξx,y. Then we have

πωN,k (LN,k = x,RN,k = y) =
∑

{ξ: LN,k(ξ)=x,RN,k(ξ)=y}

πωN,k(ξ
x,y)eV

ω(y)−V ω(x)

≤ eV
ω(y)−V ω(x) ≤ CeV̄

ω(y)−V̄ ω(x). (3.28)

Now from the law of large number applied to sum of IID variables, we have

lim
r→∞

inf
N≥1

k∈J1,N/2K

P
[
∀(x, y) ∈ J1, N − kK × JN − k + r,NK, V̄ ω(y)− V̄ ω(x) ≤ (y − x)E[log ρ1]

2

]
= 1.

(3.29)
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Moreover, since ∑
x∈J1,N−kK

y∈JN−k+r,NK

e
E[log ρ1](y−x)

2 ≤ eE[log ρ1]r/2

(1− eE[log ρ1]/2)2

we have

lim
r→∞

inf
N≥1

k∈J1,N/2K

P
[
πωN,k (RN,k(ξ) ≥ N − k + r) ≤

(
1− e

E[log ρ1]
2

)−2

e
E[log ρ1]r

2

]
= 1, (3.30)

which concludes the proof.
□

4. Bounds for the mixing time with arbitrary environments

4.1. Proof of Proposition 2.1. We look at the variable

m(ξ) :=
N∑
x=1

xξ(x).

Note that m(ξ) ∈
[
k(k+1)

2 , k(2N−k+1)
2

]
. We assume that

πωN,k

(
m(ξ) ≥ k(N + 1)

2

)
≥ 1/2

(the other case can be treated symmetrically). Now, since at all time each particle jumps to
right with a rate which is at most one, starting from ξmin (we write σmin

t for σξmin
t to lighten the

notation) we have

E
[
m(σmin

t )
]
≤ k(k + 1)

2
+ kt. (4.1)

As a consequence of Markov’s inequality, we have

P

[
m(σmin

t ) ≥ k(N + 1)

2

]
= P

[
m(σmin

t )− k(k + 1)

2
≥ k(N − k)

2

]
≤ 2t

(N − k)
, (4.2)

which is smaller than 1/4 if t ≤ N/16.

When the number of particles goes to infinity, we use the same kind of reasoning but adding
concentration estimates for m(ξ), under the equilibrium measure πωN,k (which is denoted simply
by π in this proof for readability). Let us prove that

Varπ[m(ξ)] ≤ N2k. (4.3)

To this end we introduce the filtration (Gi)Ni=1 defined by Gi := σ(ξ(x), x ∈ J1, iK), and consider
the martingale

Mi := Eπ [m(ξ) | Gi] (4.4)
where Eπ[· | Gi] denotes the conditional expectation under π . We have by construction

Varπ[m(ξ)] =

N∑
i=1

Var(Mi −Mi−1) (4.5)

Now, we are going to show that

Var(Mi −Mi−1) ≤ π(ξi = 1)(N − i)2 (4.6)
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which implies (4.3). To prove (4.6) we are going to show that for any χ ∈ {0, 1}i−1 with at most
k − 1 ones and at most N − k − 1 zeros, the quantity

∆i(χ) = Eπ
[
m(ξ) | ξJ1,i−1K = χ, ξ(i) = 0

]
− Eπ

[
m(ξ) | ξJ1,i−1K = χ, ξ(i) = 1

]
(4.7)

satisfies
0 ≤ ∆i(χ) ≤ N − i. (4.8)

Note that we have

Eπ
[
m(ξ) | ξJ1,i−1K = χ

]
=

i−1∑
x=1

xχ(x) + πωJi,NK,k−
∑i−1

x=1 χ(x)

(
N∑
x=i

xξ(x)

)
, (4.9)

where if I is a segment on Z and k′ ≤ |I|, πωI,k′ denotes the equilibrium measure for exclusion
process on I with k′ particles and environment ω. For this reason it is sufficient to prove (4.7)
for i = 1, and arbitrary k (not necessarily assuming k ≤ N/2). Hence we need to prove that for
N ≥ 1 and k ∈ J1, N − 1K we have

0 ≤ Eπ [m(ξ) | ξ(1) = 0]− Eπ [m(ξ) | ξ(1) = 1] ≤ N − 1. (4.10)

To prove this we observe that there exists a probability Π on Ω2
N,k with marginals π(· | ξ(1) = 0)

and π(· | ξ(1) = 1) such that

Π

(
N∑
x=1

1{ξ1(x)̸=ξ2(x)} = 2

)
= 1 (4.11)

(meaning that ξ1(x) = ξ2(x) except at two sites, 1 and another random site). With this coupling
we have

Eπ [m(ξ) | ξ(1) = 0]− Eπ [m(ξ) | ξ(1) = 1] = Π

[
N∑
x=1

x(ξ1(x)− ξ2(x))

]
, (4.12)

which yields (4.10). The coupling Π can be achieved using the graphical construction: we define
(ξ1t ) and (ξ2t ) starting with initial configuration 1J2,k+1K and 1J1,kK respectively and evolving
using the graphical construction with the edge {1, 2} censored (recall Section 3.3). The dynamic
conserves the number of discrepancy and π(·| ξ(1) = 0) and π(·| ξ(1) = 1) are the respective
equilibrium distribution of the marginals, so that any limit point of P

[
(ξ1t , ξ

2
t ) ∈ ·

]
(existence is

ensured by compactness) provides a coupling satisfying (4.11).

Now to see that (4.7) implies (4.6), we simply observe that, conditionned to the state of the first
i = 1 vertices of the segment, (Mi−Mi−1) can only assume two values which differ by an amount
∆i(χ) (cf. (4.7)). The corresponding conditioned variance is equal to ∆i(χ)

2 times that of the
corresponding Bernoulli variable that is

Eπ[(Mi −Mi−1)
2 | ξJ1,i−1K = χ] = π(ξ(i) = 1 | ξJ1,i−1K = χ)π(ξ(i) = 0 | ξJ1,i−1K = χ)∆i(χ)

2

≤ π(ξ(i) = 1 | ξJ1,i−1K = χ)(N − i)2. (4.13)

We then consider the average the inequality with respect to ξJ1,i−1K to conclude. Now using (4.3)
we can assume that for any ε there exists N0(ε) such that for N ≥ N0(ε) we have

min
[
πωN,k(m(ξ) ≤ Nk/3), πωN,k(m(ξ) ≥ 2Nk/3)

]
≤ ε/2. (4.14)

Let us assume that the first of these two terms is smaller (the other case is treated symmetrically).
To conclude, we must show that for t = N

30 we have

P
(
m(σmin

t ) > Nk/3
)
≤ ε/2. (4.15)
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To check this we observe that

m(σmin
t ) ≤ k(k + 1)

2
+Nt (4.16)

where Nt is the total number of particle jumps to the right. Since each particle jumps at most
with rate one, we have for N sufficiently large

P [Nt ≥ 2kt] ≤ ε/2, (4.17)

which allows to conclude.
□

4.2. Proof of Proposition 2.2. For the proof of Proposition 2.2, we apply the so-called
flow method (see [LP17, Chapter 13.4]). A path Γ is a sequence of configurations (ξ0, . . . , ξ|Γ|)
which is such that rω(ξi−1, ξi) > 0 for i ∈ J1, |Γ|K. For any given ordered pair (ξ, ξ′) ∈ ΩN,k×ΩN,k,
we assign a path Γξ,ξ′ , whose starting point is ξ and ending point is ξ′.

Using [LP17, Corollary 13.21], the spectral gap of the chain can be controlled by a simple
quantity depending on the functional (ξ, ξ′) 7→ Γξ,ξ′ . We say that an unordered pair e = {ξ, ξ′} ⊂
ΩN,k is an edge if q(e) := πωN,k(ξ)r(ξ, ξ

′) > 0 (note that by reversibility q(e) does not depend on
the orientation). We write e ∈ Γ = (ξ0, . . . , ξ|Γ|) if there exists i ∈ J1, |Γ|K such that e = {ξi−1, ξi}.
We have then (the factor 1/2 is irrelevant but appears because we are considering unoriented
edges rather than oriented one)

gapωN,k ≥

max
e

1

2q(e)

∑
(ξ,ξ′)∈ΩNk×ΩN,k : e∈Γξ,ξ′

πωN,k(ξ)π
ω
N,k(ξ

′)|Γξ,ξ′ |

−1

. (4.18)

In the proof we describe a choice for Γξ,ξ′ which yields a relevant bound for the spectral gap. Let
us fix a state ξ∗ ∈ ΩN,k which has maximal probability, that is such that

V ω(ξ∗) = min
ξ∈ΩN,k

V ω(ξ) (4.19)

(we make an arbitrary choice if there are several minimizers). Now to build the path Γξ,ξ′ we
are going to build first a path from ξ to ξ∗ and then one from ξ∗ to ξ′ and then concatenate the
two.

We can thus focus on the construction of Γξ,ξ∗ . Let

m := dH(ξ, ξ
∗) :=

1

2

N∑
x=1

|ξ(x)− ξ∗(x)|

denote the Hamming distance between ξ and ξ∗. Our first step is to build a sequence ξ(0), . . . , ξ(m)

which reduces the Hamming distance in incremental steps that is such that
ξ(0) = ξ and ξ(m) = ξ∗,

dH(ξ
(i−1), ξ(i)) = 1 for i ∈ J1,mK,

dH(ξ
(i), ξ∗) = m− i for i ∈ J1,mK.

(4.20)
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The choice we make for ξ(0), . . . , ξ(m) is not relevant for the result but let us fix one for the sake
of clarity. Let the sequences (xi)

m
i=1 and (yi)

m
i=1 be defined by

xi := min

{
x ∈ J1, NK :

N∑
x=1

(ξ(x)− ξ∗(x))+ = i

}
,

yi := min

y ∈ J1, NK :
N∑
y=1

(ξ∗(y)− ξ(y))+ = i

 .

(4.21)

These sequences locate the discrepancies between ξ and ξ∗. Then we define ξ(i) inductively as
being obtained from ξ(i−1) by moving the particle at xi to yi which is equivalent to setting

ξ(i) = ξ ∧ ξ∗ +
i∑

j=1

1{yj} +
m∑

j′=i+1

1{xj′}.

Finally, our path from ξ to ξ∗ is defined by concatenating paths Γ(i), i ∈ J1,mK, linking ξ(i−1) to
ξ(i). We define Γ(i) = (ξ

(i)
0 , . . . , ξ

(i)
|xi−yi|) as a path of minimal length |xi− yi| linking ξ(i)0 := ξ(i−1)

to ξ(i)|xi−yi| = ξ(i). To define the intermediate steps, let us assume for notational simplicity (and
without loss of generality) that xi < yi. Moreover, let (zj)

b
j=1 be defined as the decreasing

sequence such that
ξ(i−1)|Jxi,yiK = 1{zj}bj=1

.

We then set dj := yi−zj if j ∈ J1, bK and d0 := 0, and define (ξ(i)ℓ )yi−xiℓ=1 by setting if dj−1 < ℓ ≤ dj

ξ
(i)
ℓ := ξ

(i−1)
ℓ − 1{zj} + 1{zj+ℓ−dj−1}. (4.22)

In other words, we move the particle at site zj (j ≥ 1) to site zj−1 (with z0 = yi) starting from
j = 1 until j = b. We refer to Figure 4.2 for a graphical description.

Lemma 4.1. For the path collection
(
Γξ,ξ′

)
constructed above, we have

B := max
e

1

2q(e)

∑
(ξ,ξ′)∈ΩNk×ΩN,k : e∈Γξ,ξ′

πωN,k(ξ)π
ω
N,k(ξ

′)|Γξ,ξ′ | ≤ α−1N2|ΩN,k|
(
1− α

α

)N/2
.

(4.23)

Let us now conclude the proof of Proposition 2.2. By (4.18) and Lemma 4.1, we have

gapωN,k ≥ αN−2|ΩN,k|−1

(
1− α

α

)−N/2
. (4.24)

Observe that
max

ξ,ξ′∈ΩN,k

(
V ω(ξ)− V ω(ξ′)

)
≤ Nk log

1− α

α
,

and then

min
ξ∈ΩN,k

πωN,k(ξ) ≥ |ΩN,k|−1

(
1− α

α

)−Nk
. (4.25)

By (2.17), we have for ε ∈ (0, 1/2)

tN,k,ωmix (ε) ≤ α−1N2|ΩN,k|
(
1− α

α

)N (
log |ΩN,k|+Nk log

1− α

α
− log ε

)
. (4.26)

□
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Proof of Lemma 4.1. A first observation is that by construction, our paths are of length
smaller than N2. Let e be an edge and (ξ, ξ′) such that e ∈ Γξ,ξ′ . By symmetry and taking away
the factor 1/2, we can always assume that e belongs to the first part of the path linking ξ to ξ∗.
After replacing |Γξ,ξ′ | by the upper bound and summing over all ξ′, we obtain that the quantity
we want to bound is exactly

1

2q(e)

∑
(ξ,ξ′)∈ΩN,k×ΩN,k : e∈Γξ,ξ′

πωN,k(ξ)π
ω
N,k(ξ

′)|Γξ,ξ′ | ≤ N2
∑

ξ∈ΩN,k : e∈Γξ,ξ∗

πωN,k(ξ)

q(e)
. (4.27)

Now let χ0(e, ξ) denote the first end of e which is visited by the path going from ξ to ξ∗. Now
simply observing that q(e) is at least α times the smallest probability πωN,k of its two end points,
we have

πωN,k(ξ)

q(e)
≤ sup

ξ′∈Γξ,ξ∗
α−1eV (ξ′)−V (ξ). (4.28)

Hence using the bound in the sum in (4.27) we obtain that

logB ≤ logα−1N2|ΩN,k|+ sup
ξ∈ΩN,k

ξ′∈Γξ,ξ∗

V (ξ′)− V (ξ). (4.29)

To conclude we only need to prove that for every ξ ∈ ΩN,k and ξ′ ∈ Γξ,ξ∗ we have

V (ξ′)− V (ξ) ≤ N

2
log

(
1− α

α

)
. (4.30)

This follows simply by inspection from the following observation which follows from our con-
struction and our assumptions.

(i) In one step of Γξ,ξ∗ , V varies at most by log
(
1−α
α

)
in absolute value.

(ii) Along the sequence (ξ(i))mi=1, V (ξ(i)) is non-increasing.
(iii) Each concatenated path Γ(i) has a length smaller than N (hence each ξ(i)ℓ is within N/2

steps of either ξ(i) or ξ(i−1)) so that we have

max
0≤ℓ≤|xi−yi|

(V (ξ
(i)
ℓ )− V (ξ)) ≤ max

0≤ℓ≤|xi−yi|

(
V (ξ

(i)
ℓ )− V (ξ(i)) ∧ V (ξ(i−1))

)
≤ N

2
log

1− α

α
.

ξ(i−1)

xi xi+1 xi+2
z1z2z3z4z5

12 345 6 7 89

ξ(i)

yi

(L) (R)

ℓ
V (ξ

(i)
ℓ )

Figure 4. A bold circle represents a particle, and a particle at the same site for the configu-
rations ξ(i−1) and ξ(i) is colored black. Otherwise, it is red or blue. (L) A graphical description
of the movements of the particle at site xi of ξ(i−1) to the empty site yi and the numbers above
the arrows are the relative order of the movements. (R) We draw the graph of (ℓ, V (ξ

(i)
ℓ ))ℓ.

□
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5. Lower bounds on the mixing time

Theorem 2.5 contains three separate lower bounds. The first one is a consequence of Propo-
sition 2.1. In this section, we are going to prove the two remaining bounds which are restated
below as Propositions 5.1 and 5.2 respectively. The proof of these propositions rely on the two
mechanisms exposed in Subsection 2.5: The potential barrier created by rare fluctuations of V ω

(cf. Proposition 3.4) has the effect of trapping individual particles and slowing down the particle
flow.

5.1. A lower bound from the position of the first particle.

Proposition 5.1. We have with high probability

tN,k,ωmix ≥ [N(logN)−2]
1
λ (5.1)

Proof. We let y1(ω) > x1(ω) be such that V (y1(ω)) − V (x1(ω)) is maximized within 1 ≤
x ≤ y ≤ N/4 (the event that V ω is non-increasing on J1, N/4K is unlikely, and then it can be
ignored). We are going to prove that w.h.p.

tN,k,ωmix ≥ 1

2e
eV (y1)−V (x1) − 1. (5.2)

As a consequence of Proposition 3.4 (applied to the segment J1, N/4K), we have w.h.p.

V (y1)− V (x1) ≥
1

λ
logN − 2

λ
log logN + log 20,

so that (5.1) follows from (5.2). Recall the notation (3.1). Then considering that ξmin should be
the worst initial condition, we observe that

dωN,k(t) ≥ P

[
σ̄min
t (1) ≤ N

4

]
− πωN,k

(
ξ̄(1) ≤ N/4

)
. (5.3)

As a consequence of Lemma 2.3 we have w.h.p.

πωN,k(ξ̄(1) ≤ N/4) ≤ 1/4.

To have an estimate on the mixing time, we must prove that P
[
σ̄min
t (1) ≤ N

4

]
≥ 1/2. We define

τy1 := inf
{
t ≥ 0 : σ̄min

t (1) = y1
}
.

We have

P

[
σ̄min
t (1) >

N

4

]
≤ P[τy1 ≤ t]. (5.4)

We are going to show that
P[τy1 ≤ t] ≤ e(t+ 1)eV (x1)−V (y1), (5.5)

which is sufficient for us to conclude that (5.2) holds. Using the graphical construction (with an
enlargement of the probability space to sample the initial condition) we can couple σmin

t with Xπ
t

a random walk on the interval J1, y1K with transitions rates given by qωy1 (cf. (1.1)) and starting
with an initial distribution sampled from the equilibrium measure πωy1,1, in such a way that

∀t ≤ τy1 , σ̄min
t (1) ≤ Xπ

t .

Setting τ̃y1 := inf {t ≥ 0 : Xπ
t = y1}, we then have

P [τy1 ≤ t] ≤ P [τ̃y1 ≤ t] . (5.6)

We define the occupation time

u(t) :=

∫ t

0
1{y1}(X

π
s )ds.
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We have

E [u(t+ 1)] ≥ P[u(t+ 1) ≥ 1] ≥ P[τ̃y1 ≤ t]P
[
∀s ∈ [0, 1] : Xπ

τ̃y1+s
= y1

]
≥ e−1P[τ̃1 ≤ t], (5.7)

where in the last inequality we use the strong Markov property. As the process (Xπ
t )t≥0 is

stationary,
E[u(t+ 1)] = (t+ 1)πωy1,1(y1) ≤ (t+ 1)eV (y1)−V (x1),

which allows to conclude that

P[τ̃1 ≤ t] ≤ e(t+ 1)eV (y1)−V (x1). (5.8)

□

5.2. A lower bound derived from flow consideration. Let us now derive the third
bound which is necessary to complete the proof of Theorem 2.5.

Proposition 5.2. There exists a positive constant c = c(α,P) such that w.h.p. we have

tN,kmix ≥ ckN
1
2λ (logN)−2(1+ 1

λ). (5.9)

To prove the above result, we adopt the strategy developed in [Sch19, Proposition 4.2] by
investigating the flow of particles through a slow segment of size of order (logN) where the drift
of the random environment points to the left. This flow of particles is controlled via a comparison
with a boundary driven exclusion process.

In [Sch19] the slow segment is selected to be such that ωx < 1/2 for every site. It has the
advantage of simplifying the computation since it allows for comparison with the homogeneous
exclusion process for which computation has been performed in [BECE00]. Our approach brings
an improvement by selecting the slow segment based on the potential function V ω. The relevant
quantity that limits the flow is the worst potential barrier that the particles have to overcome.
Proposition 3.4 allows to identify the worst potential barrier in the system. We let x2(ω) ≤ y2(ω)
be the smallest elements of JN/2, 3N/4K such that

V ω(y2)− V ω(x2) = max
N/2≤x≤y≤3N/4

(V ω(y)− V ω(x)) .

According to Proposition 3.4 we have w.h.p.

V (y2)− V (x2) ≥
1

λ
(logN − 2 log logN) and y2 − x2 ≤ qN . (5.10)

In order to illustrate how the mixing time can be controlled using the flow of particles, we
start with a simple lemma. Let Jt denote the number of particles on the last portion of the
segment,

Jt :=
∑

x≥y2+1

σmin
t (x). (5.11)

Lemma 5.3. For any ε > 0, we have with high probability for every t ≥ 0.

dωN,k(t) ≥ 1− 4E[Jt]

k
− ε. (5.12)

Proof. Setting B :=
{
ξ ∈ ΩN,k :

∑
x≥y2+1 ξ(x) < k/4

}
, we have

dωN,k(t) ≥ ∥P ξmin
t − πωN,k∥TV ≥ P[σmin

t ∈ B]− πωN,k(B). (5.13)

By Lemma 2.3, the second term is smaller than ε with high probability. Concerning the first
term, we have by Markov’s inequality

P
[
σmin
t ∈ B

]
= 1−P [Jt ≥ k/4] ≥ 1− 4E[Jt]

k
. (5.14)
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□

Now we can control E[Jt] by comparing our system with one in which the particles flow
faster. We consider a process on a different state space

Ω̃x2,y2 := {ξ : Jx2, y2 + 1K → Z+ : ∀x ∈ Jx2, y2K, ξ(x) ∈ {0, 1}} . (5.15)

Under this new process the particles follow the exclusion dynamics in the bulk but new rules are
added at the boundaries. If ξ(x2) = 0 then a particle is added at site x2 with rate one. At the
other end of the segment particles can jump from site y2 to site y2 + 1 without respecting the
exclusion rule (i.e., the site y2+1 is allowed to contain arbitrarily many particles) and particles at
site y2+1 remain there forever. We define the generator of the process to be (for f : Ω̃x2,y2 7→ R)

L̃ωx2,y2f(ξ) :=

y2−1∑
z=x2

rω(ξ, ξz,z+1)
[
f(ξz,z+1)− f(ξ)

]
+ ωx2−11{ξ(x2)=0}

[
f(ξ + δx2)− f(ξ)

]
+ ωy21{ξ(y2)=1}

[
f(ξ − δy2 + δy2+1)− f(ξ)

]
, (5.16)

where rω is defined in (2.8). We refer to Figure 5 for a graphical description. We let (σ̃ξt )t≥0

denote the corresponding process starting from an initial condition ξ ∈ Ω̃x2,y2 .

x2 y2 y2 + 1

ωx2−1

x

1 − ωx ×

ωy2

1 − ωy2

y

ωy1 − ωy ×1 − ωz

z

Figure 5. A graphical representation of the boundary driven process: a bold circle represents a
particle, and the number above every arrow represents the jump rate while a red ”×” represents
an inadmissible jump. In addition, the site y2 +1 can accommodate infinite many particles and
all particles at site y2 + 1 stay put.

Lemma 5.4. Let 0 denote the configuration with all sites in Jx2, y2 + 1K being empty, and
then we have

Jt ≤ σ̃0t (y2 + 1), (5.17)
where Jt is defined in (5.11).

Proof. The process (σ̃0t )t≥0 can be constructed together with (σmin
t )t≥0 on the same prob-

ability space using the graphical construction of Section 3.2 (with the obvious adaptation of the
construction to fit the boundary condition for (σ̃0t )t≥0 using the same clocks (T

(x)
n )x,n∈N and

auxiliary variables (U
(x)
n )x,n∈N for the two processes. It can then be checked by inspection that

for every t ≥ 0

∀x ∈ Jx2, y2 + 1K
N∑
z=x

σmin
t (z) ≤

y2+1∑
z=x

σ̃0t (z). (5.18)

Since the above inequality is satisfied at t = 0, it is sufficient to check that it is conserved by any
update of the two processes. The result then just corresponds to the case x = y2 + 1. □

Proposition 5.5. There exists a constant C = C(α,P) such that for all t ≥ 0 w.h.p. we
have

E [σ̃t(y2 + 1)] ≤ tCN− 1
2λ (logN)2(1+

1
λ
). (5.19)

With Proposition 5.5 whose proof is detailed in the next subsection, we are ready for the proof
of Proposition 5.2.
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Proof of Proposition 5.2. By Lemma 5.3 and Lemma 5.4, we have

dωN,k(t) ≥
7

8
− 4

E[σ̃t(y2 + 1)]

k
. (5.20)

By Proposition 5.5, we take

t =
1

8C
kN

1
2λ (logN)−2(1+ 1

λ
)

in (5.20) to conclude the proof.
□

5.3. Proof of Proposition 5.5. Note that σ̃0t (y2 +1) is a superadditive ergodic sequence.
To see this we let ϑs denote the time shift operator on the graphical construction variables.
Recalling (3.4) we set

ϑs((T
(x)
i , U

(x)
i )x∈Z,i≥1) :=

(
T
(x)
i+i0(x,s)

− s, U
(x)
i+i0(x,s)

)
x∈Z,i≥1

. (5.21)

Now we observe that the graphical construction preserves the order ≼ on Ω̃x2,y2 defined by

ξ ≼ ξ′ if ∀x ≥ x2,

y2+1∑
z=x

ξ(z) ≤
y2+1∑
z=x

ξ′(z). (5.22)

Hence comparing the dynamic in the interval [s, s + t] with that starting from 0 at time s, we
obtain

σ̃0s+t(y2 + 1) ≥ σ̃0s (y2 + 1) + (ϑs ◦ σ̃)0t (y2 + 1). (5.23)
Since the shift operator ϑs on (T,U) is ergodic, we obtain from Kingman’s subbadditive ergodic
Theorem [Kin73] (continuous time version) that

E
[
σ̃0t (y2 + 1)

]
≤ t

[
lim
s→∞

1

s
σ̃0s (y2 + 1)

]
. (5.24)

Letting Ns :=
∑y2

x=x2
σ̃0s (x) denote the number of mobile particles in the system (particles at

site y2 + 1 which have stopped moving are not counted), we have

σ̃0t (y2 + 1) =
∑
s∈(0,t]

1{Ns<Ns−}. (5.25)

Letting (Tn)n≥1 denote the sequence of time at which Nt < Nt− (in increasing order), we have

lim
s→∞

1

s
σ̃0s (y2 + 1) = lim

n→∞

n

Tn
. (5.26)

Similarly to (5.23), using preservation of order and the fact that

σ0s ≼ [σ0s (y2 + 1) + y2 − x2 + 1]1{y2+1},

we have for every s > 0

σ̃0s+t(y2 + 1) ≤ σ̃0s (y2 + 1) + (ϑs ◦ σ̃)0t (y2 + 1) + y2 − x2 + 1. (5.27)

Now as a consequence of (5.27)

Tl+y2−x2+2 ≥ Tl + ϑTl ◦ T1. (5.28)

Since Tl is a stopping time with respect to (Ft)t≥0 (recall (3.5)), by the strong Markov property
ϑTl ◦ T1 is independent of T1 and has the same distribution. Iterating the process we obtain that

T(r−1)(y2−x2+2)+1 ≥ T (1)
1 + · · ·+ T (r)

1 (5.29)
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where (T (a)
1 )ra=1 is a sequence of IID copies of T1. This yields that

lim inf
n→∞

Tn
n

≥ 1

y2 − x2 + 2
E [T1] . (5.30)

Finally let us compare (σ̃0t )t≥0 with (σ̃
′
t)t≥0 starting from another initial condition. Now we

specify the initial condition. Let us first choose the number of particle by setting

Λ(ω) := {x ∈ Jx2, y2K : V (x) ≤ [V (y2) + V (x2)]/2} ,
k′(ω) := #Λ(ω).

(5.31)

We let (σ̃
′
t)t≥0 be the dynamic with generator (5.16) and initial configuration σ̃′0 is obtained

by setting σ̃′0(y2 + 1) = 0 and sampling πω[x2,y2],k′ (the invariant probability measure for the
exclusion process on the segment Jx2, y2K with k′ particles) to set the values of (σ̃′0(x))x∈Jx2,y2K.
Using monotonicity again we have

T1 ≥ inf{t ≥ 0 : σ̃′t(y2 + 1) = 1} ≥ inf{t ≥ 0 : σ̃′t(x2) = 0 or σ̃′t(y2) = 1} =: T ′. (5.32)

Now let us observe that until time T ′, the process (σ̃′t)t≥0 (or rather, its restriction to Jx2, y2K)
coincides with the exclusion process on the segment Jx2, y2K with k′ particles. Using this we can
prove the following (the proof is postponed to the end of the section).

Lemma 5.6. We have

E
[
T ′] ≥ 1

16e2(y2 − x2)
e

V (y2)−V (x2)
2 . (5.33)

Let us now conclude the proof of Proposition 5.5. Combing (5.24), (5.26), (5.30) and (5.32),
we have

E
[
σ̃0t (y2 + 1)

]
≤ t

[
lim
s→∞

1

s
σ̃0s (y2 + 1)

]
≤ t(y2 − x2 + 2)

E [T1]
≤ t(y2 − x2 + 2)

E [T ′]
. (5.34)

Using Lemma 5.6, we obtain

E
[
σ̃0t (y2 + 1)

]
≤ t16e2(y2 − x2 + 2)2e−

V (y2)−V (x2)
2 . (5.35)

By (5.10), we have w.h.p.

E
[
σ̃0t (y2 + 1)

]
≤ t16e2(qN + 2)2N− 1

2λ (logN)
1.
λ . (5.36)

□

Proof. Proof of Lemma 5.6 With a small abuse of notation, in this proof (σ̃′t)t≥0 denotes
the exclusion process on the segment Jx2, y2K with k′ particles starting from stationarity. Since
E [T ′] ≥ tP [T ′ > t], our goal is to provide a lower bound on P [T ′ > t]. We define

B1 :=
{
ξ ∈ ΩJx2,y2K,k′ : ξ(x2) = 0

}
,

B2 :=
{
ξ ∈ ΩJx2,y2K,k′ : ξ(y2) = 1

}
.

(5.37)

Using the strong Markov property at T ′ and the fact that jumping rates for particles are bounded
from above by one at every site, we have

P
[
∀t ∈ [T ′, T ′ + 1], σ̃′t ∈ B1 ∪ B2

]
≥ e−2.

Using independence as in (5.7), we have

P
[
T ′ ≤ t

]
≤ e2(t+ 1)πω[x2,y2],k′ (B1 ∪ B2) . (5.38)
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We now head to provide an upper bound on πω[x2,y2],k′(B1). Recalling the definition of Λ in (5.31),
we observe that when ξ ∈ B1, since x2 ∈ Λ and there are k′ particles, there must be a particle in
Λ∁ := Jx2, y2K \ Λ. Let R(ξ) be the position of the rightmost such particle

R(ξ) := sup
{
z ∈ Λ∁ : ξ(z) = 1

}
,

and set for z ∈ Λ∁

B1,z := {ξ ∈ B1 : R(ξ) = z} .
By moving the particle from site z to site x2 as in (3.28), we obtain

πω[x2,y2],k′ (B1,z) =
∑
ξ∈B1,z

πω[x2,y2],k′(ξ
x2,z)e−V (z)+V (x2) ≤ e−V (z)+V (x2) ≤ e−

V (y2)−V (x2)
2 ,

and then
πω[x2,y2],k′(B1) =

∑
z∈Λ∁

πω[x2,y2],k′(B1,z) ≤ (y2 − x2)e
−V (y2)−V (x2)

2 . (5.39)

Similarly, we can obtain

πω[x2,y2],k′(B2) ≤ (y2 − x2)e
−V (y2)−V (x2)

2 . (5.40)

Combining (5.39) with (5.40), in (5.38) we take

t =
1

4e2(y2 − x2)
e

V (y2)−V (x2)
2 − 1

to obtain

E
[
T ′] ≥ 1

2

(
1

4e2(y2 − x2)
e

V (y2)−V (x2)
2 − 1

)
≥ 1

16e2(y2 − x2)
e

V (y2)−V (x2)
2 . (5.41)

□

6. Upper bound on the mixing time

This section is dedicated to the proof of Theorem 2.4. First in Section 6.1 we are going to
reduce the problem to the estimation of the hitting time of ξmax. Afterwards using Proposition
3.2 and Proposition 3.3 we are going to provide estimate of this hitting time using a modified
censored dynamics. First in Section 6.2 we treat the case of k ≤ qN which is a bit simpler and
treat the more general case qN < k ≤ N/2 in Section 6.4.

6.1. Deducing the mixing time from the hitting time of the maximal configura-
tion. Let us first show that the study of the mixing time can be reduced to that of the probability
of hitting the configuration ξmax starting from the other extremal configuration ξmin.

Proposition 6.1. We have for every t > 0 and n ∈ N

dωN,k(nt) ≤ (1− Pt(ξmin, ξmax))
n . (6.1)

Proof. We have (see for instance [LP17, Lemma 4.10])

dωN,k(t) ≤ d̄ωN,k(t) := max
ξ,ξ′

∥P ξt − P ξ
′

t ∥TV ≤ max
ξ,ξ′

P
[
σξt ̸= σξ

′

t

]
(6.2)

Using the monotonicity under the graphical construction (cf. Proposition 3.1) for all ξ ∈ ΩN,k
and t ≥ 0 we have

σmin
t ≤ σξt ≤ σmax

t ,
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where σmin and σmax are starting from the extremal conditions ξmin and ξmax in (3.3). As a
consequence for arbitrary ξ and ξ′ with τ ′ := inf{t ≥ 0 : σξt = σξ

′

t }, we have

∀t ≥ τ ′, σξt = σξ
′

t . (6.3)

On the other hand we have

τ ′ ≥ τ := inf
{
t ≥ 0 : σmin

t = ξmax

}
. (6.4)

Therefore (6.2) implies that
dωN,k(t) ≤ P

(
τ > t

)
. (6.5)

Using again the Markov property and the monotonicity in Proposition 3.1, we have for any
positive integer n

P (τ > nt) ≤ P
(
σmin
it ̸= ξmax, ∀i ∈ J1, nK

)
≤ P

(
σmin
t ̸= ξmax

)n
. (6.6)

□

6.2. The case kN ≤ qN . Before stating the main result of this section, let us present a
strategy to bound Pt(ξmin, ξmax) from below. We present in the process a few key technical
lemmas whose proof is presented in the next subsection. We consider environment within the
following event

AN :=

ω : max
1≤x≤y≤N
y−x≥qN

(V (y)− V (x)) ≤ −3 logN

 . (6.7)

Note that by Proposition 3.4, this is an high probability event. The event AN ensures that on
segments of length 4qN , at equilibrium the particles concentrate on the right half of the segment
with high probability. It also ensures that with high probability the last site is occupied by a
particle.

Lemma 6.2. If ω ∈ AN , then we have for any x ∈ J0, N − 4qN K and any k ≤ qN ,

πω[x+1,x+4qN ],k

[
ξ̄(1) ≤ x+ 2qN

]
≤ 2q2NN

−3,

πω[x+1,x+4qN ],qN
[ξ(x+ 4qN ) = 0] ≤ 3qNN

−3.
(6.8)

Our second technical lemma is a direct consequence of Proposition 2.2. It allows to bound the
mixing time of the system for each of the intervals of length 4qN in a quantitative way. We define

T = TN := 80α−1q4N

(
4qN
qN

)(
1− α

α

)2qN

log

(
1− α

α

)
.

The following result is obtained by taking ε = N−3 in Proposition 2.2.

Lemma 6.3. Under the assumption (2.21) we have for all k ≤ qN , all ω and all x ∈ J0, N −
4qN K

dω[x+1,x+4qN ],k(T ) ≤ N−3. (6.9)

We are going to use the censoring inequality to guide all the particles to the right with the
following plan. We are going to design our censoring such that on the time interval [iT, (i+1)T ),
with i ∈ Z+ satisfying 2(i + 2)qN < N , our k particles perform the exclusion process restricted
in the interval on the interval J2iqN + 1, 2(i + 2)qN K (of length 4qN ). Hence at each such time
step, particles take a time T to shift towards the right of an amount 2qN . After the whole
⌈N/(2qN )⌉ − 1 steps have been performed, all particles are in JN − 4qN + 1, NK. Once this is
done we conclude using censoring again by showing that the dynamics in JN − 4qN +1, NK with
less than qN particles hits ξmax after time T with a positive probability. For this last step we need
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the following result which states roughly that ξmax has a positive weight with high probability
under the equilibrium measure.

Lemma 6.4. We have

lim
ε→0

inf
N≥1

k∈J1,N/2K

P
[
πωN,k(ξmax) > ε

]
= 1. (6.10)

In particular if BN,k :=
{
ω : πω[N−4qN+1,N ],k(ξmax) ≥ 2q−1

N

}
, we have

lim
N→∞

inf
k∈J1,qN K

P [BN,k] = 1. (6.11)

Proposition 6.5. If k ≤ qN , if ω ∈ AN ∩ BN,k and setting t0 := T
(⌈

N
2qN

⌉
− 1
)
, we have

Pt0(ξmin, ξmax) ≥
3

2qN
. (6.12)

In particular the inequality holds with high probability.

The last part of the statement is of course a direct consequence of the first part combined
with (6.11) and of Proposition 3.4 (which ensures that AN and BN,k are high probability events).
Before proving a proof of Proposition 6.5 using the strategy exposed above, let us use it to
conclude the proof of the upper bound on the mixing time.

Proof of Theorem 2.4 when k ≤ qN . By Proposition 6.1 and Proposition 6.5, we have

dωN,k(2qN t0) ≤ (1− Pt0(ξmin, ξmax))
2qN ≤

(
1− 1

qN

)2qN

≤ 1

4
, (6.13)

which allows us to conclude the proof for the case k ≤ qN with the inequality(
4qN
qN

)
≤
(
44

33

)qN
.

□

Now we move to prove Proposition 6.5 using the censoring inequality (Proposition 3.2). More
precisely, we define for i ∈ J0, ⌈N/(2qN )⌉ − 3K

Ci :=
{
{i2qN , i2qN + 1}, {(i+ 2)2qN , (i+ 2)2qN + 1}

}
(6.14)

and set
C⌈N/(2qN )⌉−2 := {N − 4qN , N − 4qN + 1} . (6.15)

We define a censoring scheme by setting

C(t) := Ci for t ∈ [iT, (i+ 1)T ), i ∈ J0, ⌈N/(2qN )⌉ − 2K, (6.16)

and C(t) = ∅ for t ≥ ⌈N/(2qN )⌉ − 1. Let us write

Afin := {ξ ∈ ΩN,k : ∀x ∈ J0, N − 4qN K, ξ(x) = 0} . (6.17)

Recalling the notation of Section 3.3, we let (σmin,C
t )t≥0 denote the corresponding censored dy-

namics with initial condition ξmin.

Lemma 6.6. If ω ∈ AN , we have

P
[
σmin,C
(⌈N/2qN ⌉−2)T ∈ Afin

]
≥ 1−N−1. (6.18)
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Proof. For i ∈ J0, ⌈N/2qN⌉ − 2K, we define

Ai :=
{
ξ ∈ ΩN,k : 2iqN < ξ̄(1) ≤ ξ̄(k) ≤ 2(i+ 2)qN

}
.

Now we prove by induction that for all i ∈ J0, ⌈N/2qN⌉ − 3K

P
[
σmin,C
iT ∈ Ai

]
≥ 1− i

4q2N
N3

. (6.19)

From the definitions of C and ξmin, the inequality in (6.19) holds for i = 0. Assuming that
(6.19) holds for i, then k particles perform the simple exclusion process restricted in the interval
J2iqN + 1, 2(i+ 2)qN K. By Lemma 6.2 and Lemma 6.3 with x = 2iqN , we have

P
[
σmin,C
(i+1)T ∈ Ai+1

]
≥ P

[
σmin,C
iT ∈ Ai

]
−
(
πω[2iqN+1,2(i+2)qN ],k

(
ξ̄(1) ≤ 2(i+ 1)qN

)
+ dω[2iqN+1,2(i+2)qN ],k(T )

)
≥ 1− i

4q2N
N3

−
4q2N
N3

. (6.20)

This concludes the induction and the case i = ⌈N/2qN⌉ − 3 in (6.20) to concludes the proof of
the lemma since

2(⌈N/2qN⌉ − 2)qN ≥ N − 4qN .

□

Proof of Proposition 6.5. Using Proposition 3.2, it is sufficient to bound the corre-
sponding probability for the censored dynamics, that is, P C

(⌈N/2qN ⌉−1)T (ξmin, ξmax). If

σmin,C
(⌈N/2qN ⌉−2)T ∈ Afin,

then the restriction to the segment JN−4qN+1, NK of the dynamics corresponds to an exclusion
process with k particles on a segment of length 4qN . Let π[N−4qN+1,N ],k and d[N−4qN+1,N ],k(t)
denote respectively the equilibrium measure and the distance to equilibrium for this dynamics,
and then we have

P C
(⌈N/2qN ⌉−1)T (ξmin, ξmax) ≥ P[σξmin,C

(⌈N/2qN ⌉−2)T ∈ Afin](π[N−4qN+1,N ],k(ξmax)−d[N−4qN+1,N ],k(T ))

≥ (1−N−1)(2q−1
N −N−3) ≥ 3

2qN
(6.21)

where we have used the definition of BN,k (recall (6.11)) and Lemma 6.3 with x = N − 4qN .
□

6.3. Proof of auxiliary lemmas.

Proof of Lemma 6.2. To provide an upper bound on πω[x+1,x+4qN ],k

[
ξ̄(1) ≤ x+ 2qN

]
, for

ξ ∈ Ω[x+1,x+4qN ],k we define its rightmost empty site to be

R̄(ξ) := sup {y ∈ Jx+ 1, x+ 4qN K : ξ(y) = 0} . (6.22)

As in (3.28), we have

πω[x+1,x+4qN ],k

[
ξ̄(1) = z, R̄(ξ) = y

]
≤ eV

ω(y)−V ω(z) ≤ N−3 (6.23)
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where we have used y − z ≥ qN and ω ∈ AN . Then we have

πω[x+1,x+4qN ],k

[
ξ̄(1) ≤ x+ 2qN

]
=

∑
z∈Jx+1,x+2qN K

y∈Jx+4qN−k+2,x+4qN K

π[x+1,x+4qN ],k

[
ξ̄(1) = z, R̄(ξ) = y

]
≤ 2q2NN

−3. (6.24)

We now move to deal with πω[x+1,x+4qN ],qN
[ξ(x+ 4qN ) = 0]. For ξ ∈ Ω[x+1,x+4qN ],qN , we

define its leftmost particle to be

L̄(ξ) := inf {y ∈ Jx+ 1, x+ 4qN K : ξ(y) = 1} .

As in (3.28), we have

πω[x+1,x+4qN ],qN

[
ξ(x+ 4qN ) = 0; L̄(ξ) = y

]
≤ eV

ω(x+4qN )−V ω(y) ≤ N−3 (6.25)

where we have used y ≤ x+ 3qN and ω ∈ AN . Then

πω[x+1,x+4qN ],qN
[ξ(x+ 4qN ) = 0] =

∑
y∈Jx+1,x+3qN K

πω[x+1,x+4qN ],qN

[
ξ(x+ 4qN ) = 0; L̄(ξ) = y

]
≤ 3qNN

−3. (6.26)

□

Proof of Lemma 6.4. Recall the event Ar in (2.25). Observe that

max
ξ∈Ar

(V ω(ξmax)− V ω(ξ)) ≤ 2r2 log
1− α

α
, (6.27)

and then we have
πωN,k(ξmax)

πωN,k(Ar)
≥ |Ar|−1 exp

(
−max
ξ∈Ar

(V ω(ξmax)− V ω(ξ))

)
≥ 2−2re−2r2 log 1−α

α . (6.28)

For given ε > 0 sufficiently small, we take

r(ε) :=

(
− log 2ε

log 2(1−α)
α

)1/2

(6.29)

so that the rightmost hand-side of (6.28) is larger than 2ε. Moreover, by (3.30) we know that

lim
r→∞

inf
N≥1

k∈J1,N/2K

P
[
πωN,k (Ar) ≥ 1− 2(1− e

E[log ρ1]
2 )−2e

E[log ρ1]r
2

]
= 1. (6.30)

Since when r is sufficiently large we have

1− 2(1− e
E[log ρ1]

2 )−2e
E[log ρ1]r

2 ≥ 1

2
,

then by (6.30) with r chosen as in (6.29) we obtain

lim
ε→0

inf
N≥1

k∈J1,N/2K

P
[
πωN,k(ξmax) ≥ ε

]
= 1. (6.31)

□
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6.4. The case kN ≥ qN . To treat the case of a larger number of particles, the small problem
there is with the strategy of the previous subsection is that it does not allow to channel all the
k particles to the right at the same time. What we do instead is that we use the process to
transport one particle to the right, and then use Proposition 3.3 to be able to move all other
particles to the left and iterate the process. We largely recycle the strategy used in the previous
section. In the final step as in (6.21), we need to deal with the leftmost qN particles performing
the exclusion process restricted in the interval JN − k − 3qN + 1, N − k + qN K, and then define

B′
N,k =

{
ω : πω[N−k−3qN+1,N−k+qN ],qN

(ξ′max) ≥ 2q−1
N

}
where ξ′max := 1{N−k+1≤x≤N−k+qN}. By Lemma 6.4 we have

lim
N→∞

inf
k∈JqN+1,N/2K

P
[
B′
N,k

]
= 1. (6.32)

Proposition 6.7. If k > qN and ω ∈ AN∩B′
N,k, setting t1 :=

(⌈
N−k+qN

2qN

⌉
− 1
)
(k−qN+1)T

we have
Pt1(ξmin, ξmax) ≥

1

qN
. (6.33)

Proof of Theorem 2.4 when k > qN . By Proposition 6.1 and Proposition 6.7, we have

dωN,k(2qN t1) ≤ (1− Pt1(ξmin, ξmax))
2qN ≤

(
1− 1

qN

)2qN

≤ 1

4
, (6.34)

which allows us to conclude the proof for the case k > qN with the inequality(
4qN
qN

)
≤
(
44

33

)qN
.

□

The remaining of the subsection is devoted to the proof of Proposition 6.7. This time we need
to combine our censoring scheme with displacements of particles to the left (using Proposition
3.3). Our plan is to first move (one by one) the rightmost k − qN particles to the segment
JN − k + qN + 1, NK and use censoring to block the these k − qN particles afterwards. We are
then left with the problem of moving the remaining qN particles, and this can be treated as in
Proposition 6.5.

Let us explain our plan to move the the rightmost k−qN particles one by one with censoring
and displacement. We proceed by induction (each step is going to leave aside an event of small
probability, and our technical estimates are such that the sum over all steps of these probabilities
will remain small). We set r = ⌈(N − k + qN )/2qN⌉ − 1, and define for j ∈ J0, k − qN K,
i ∈ J0, ⌈(N − k + qN )/2qN⌉ − 3K, ai,j := k − qN − j + 2qN i,

Ci,j :=
{
{ai,j , ai,j + 1}, {ai,j + 4qN , ai,j + 4qN + 1}, {N − j,N − j + 1}

}
,

C∗
j =

{
{N − 4qN − j,N − 4qN − j + 1}, {N − j,N − j + 1}

}
.

(6.35)

We define the censoring scheme C by setting
C(t) = Ci,j if t ∈ [(i+ rj)T, (i+ rj + 1)T ),

C(t) = C∗
j if t ∈ [(r(j + 1)− 1)T, r(j + 1)T ),

C(t) = ∅ if t ≥ r(k − qN + 1)T.

(6.36)

The censored dynamic (σC,min
t ) moves the first particle to the right in a time rT . Indeed, the

same mechanism used in the proof of Proposition 6.5 moves (w.h.p) the last qN particles in the
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segment JN − 4qN + 1, NK by time (r − 1)T . Then we mix the qN particles within the segment
JN − 4qN + 1, NK and Lemma 6.2 ensures that after an additional time T , the last site N is
occupied by a particle.

We then proceed by induction to show that for j ≤ k − qN all the sites in the segment
JN − j + 1, NK are occupied by particles by time rjT . Our censoring is designed so that after
time rjT the number of particles in the j rightmost sites does not change.

In order to facilitate the induction (this is not strictly necessary though) at each time of the
form rjT =: sj we move all the leftmost N − j particles to the left on the segment J1, N − jK, so
that the beginning of each induction step looks the same. We define thus Qj by setting

Qj(ξ, ξ
∗
j ) = 1, Qj(ξ, ξ

′) = 0 if ξ′ ̸= ξ∗j (6.37)

where the function ξ → ξ∗j is defined by (recall (3.1))

ξ̄∗j (ℓ) =

{
ℓ if l ≤ k − j,

ξ̄(ℓ) if ℓ > k − j.
(6.38)

Since ξ∗j ≤ ξ, Qj satisfies (3.9). We let (σ̃t)t≥0 denote the composed censored dynamics (recall
(3.10)) corresponding to C, (sj)

k−qN
j=1 and (Qj)

k−qN
j=1 and starting from ξmin. We set

ξ0j := 1J1,k−jK + 1JN−j+1,NK.

The following lemma formalizes in a quantitative manner the induction described above.

Lemma 6.8. For all j ∈ J0, k − qN K, we have

P
[
σ̃rjT = ξ0j

]
≥ 1− 4jqNN

−2. (6.39)

Proof. The statement is trivial for j = 0. For the induction step it is sufficient to prove
that

P
[
σ̃r(j+1)T = ξ0j+1 | σ̃rjT = ξ0j

]
≥ 1− 4qNN

−2. (6.40)
With our choice for C, the j particles in the interval JN − j+1, NK do not move between time in-
stants rjT and r(j+1)T , it is therefore sufficient to control P

[
σ̃r(j+1)T (N − j) = 1 | σ̃rjT = ξ0j

]
.

Let us define

Bj :=

ξ ∈ ΩN,k :

N−j∑
N−j−4qN+1

ξ(x) = qN

 (6.41)

We can repeat the proof of Lemma 6.6 to obtain that

P
[
σ̃rjT+(r−1)T ∈ Bj | σ̃rjT = ξ∗j

]
≥ 1− (r − 1)

4q2N
N3

. (6.42)

Now in the time interval [rjT + (r − 1)T, r(j + 1)T ), the censoring makes the restriction of the
dynamics to the segment JN − j− 4qN +1, N − jK an exclusion process with qN particles. Hence
using Lemma 6.3 and the second estimate in Lemma 6.2 we have for any χ ∈ Bj

P
[
σ̃r(j+1)T (N − j) = 1 | σ̃rjT+(r−1)T = χ

]
≥ 1−N−3(1 + 3q2N ). (6.43)

Combining (6.42) and (6.43), we obtain

P
[
σ̃r(j+1)T = ξ0j

]
≥ P

[
σ̃r(j+1)T = ξ0j

]
− r

4q2N
N3

≥ 1− 4(j + 1)qNN
−2. (6.44)

□
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Proof of Proposition 6.7. Taking j = k − qN in Lemma 6.8, from now on we assume
that the event {σ̃(k−qN )rT = ξ0k−qN } holds. Then the rightmost k− qN particles are frozen in the
rightmost k − qN sites for t ≥ (k − qN )rT , and at t = (k − qN )rT the leftmost qN particles are
in the leftmost qN sites. Thus we can repeat the proof in Proposition 6.5 to obtain

P
[
σ̃r(k−qN+1)T = ξmax

]
≥ 3

2
q−1
N

(
1− (k − qN )

4qN
N2

)
≥ 1

qN
(6.45)

where we have used ω ∈ B′
N,k. We conclude the proof by Proposition 3.2 and Proposition 3.3. □
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Resumo: Esta tese estuda o tempo de mistura em variação total para a dinâmica do banho de calor de
dois modelos de interface e um sistema de partículas.
O primeiro modelo de interface que consideramos é o modelo de fixação de polímero interagindo com
uma linha defeituosa impenetrável e, na fase repulsiva, mostramos que a distância de variação total ao
equilíbrio cai abruptamente de um para zero.
O outro modelo de interface é uma variante do modelo de fixação de polímero que também está sujeito
a outra força externa puxando a interface para longe da linha defeituosa. Identificamos a fase local-
izada/deslocalizada para a estática, e para a dinâmica identificamos a fase de mistura lenta/rápida onde
o tempo de mistura cresce polinomialmente/superpolinomialmente.
Finalmente, estudamos o processo de exclusão simples assimétrico em um ambiente aleatório onde as
taxas de salto das partículas são obtidas independentemente de uma lei comum. Supondo que o ambiente
aleatório seja transiente para a direita, provamos que com alta probabilidade o tempo de mistura do
processo cresce polinomialmente.

Palavras-chave: Cadeia de markov, Dinâmica do banho de calor, Tempo de mistura, Modelos de
interface, processo de exclusão, ambiente aleatório.

Abstract: This thesis studies the total variation mixing times for the heat-bath dynamics of two
interface models and a particle system.
The first interface model we consider is the polymer pinning model interacting with an impenetrable
defected line, and in the repulsive phase we show that the total variation distance to equilibrium abruptly
drops from one to zero.
The other interface model is a variant of the polymer pinning model which is also subjected to another
external force pulling the interface away from the defected line. We identify the localized/delocalized
phase for the statics, and for the dynamics we identify the slow/rapidly mixing phase where the mixing
time grows polynomially/superpolynomially.
Finally, we study the asymmetric simple exclusion process in a random environment where the jump rates
of particles are independently sampled from a common law. Assuming that the random environment
is transient to the right, we prove that the mixing time of the process grows polynomially with high
probability.

Key words: Markov chain, Heat-bath dynamics, Mixing times, Interface models, Exclusion process,
random environment.
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