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Organization of the talk
1. Introduction to mixing for continuous-time Markov chains

Starting from 1980s

Aldous, Diaconis, etc.

2. Mixing time for an interface model

= substrate/interface  interaction
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interface

= external force

3. Mixing time for ASEP in a random environment
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Chapter 1

Introduction to mixing
for continuous-time Markov chains

finite state space Ω
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Setup

Finite state space Ω, elements x , y , z · · ·
Generator: L = (r(x , y))x ,y∈Ω is an Ω× Ω matrix:

▶ Off diagonal elements are nonnegative;
▶ Every row sum is equal to zero.

Homeomorphism L : RΩ → RΩ (for f ∈ RΩ)

(Lf )(x) :=
∑
y∈Ω

r(x , y) (f (y)− f (x)) .

Markov semi-group (Pt)t≥0:

Pt := etL =
∞∑
k=0

(tL)k

k!
,

Pt(x , y) ≥ 0,
∑
y∈Ω

Pt(x , y) = 1.
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Markov chain definition

The random process (Xt)t≥0 is a continuous-time Markov chain with
generator L and initial distribution ν if it is càdlàg and

∀x ∈ Ω, P [X0 = x ] = ν(x);

Markov property: for 0 ≤ t1 < · · · < tn < s < s + t,

P [Xs+t = y |Xs = x ;Xtk = zk , ∀k ≤ n] = P [Xs+t = y |Xs = x ] = Pt(x , y).
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Invariant probability measure

µ is an invariant probability measure if

(∀t ≥ 0, µPt = µ) ⇔ µL = 0.

Irreducible: for all x ̸= y ∈ Ω, there exists a path
Γxy = (x , z1, · · · , zℓ−1, y) with r(zk−1, zk) > 0 for all 1 ≤ k ≤ ℓ(x , y).

Theorem

If (Ω,L) is irreducible, there exists a unique invariant probability measure
µ, and the distribution Pν of (Xt)t≥0 with initial distribution ν converges
to µ, i.e.

lim
t→∞

∑
y∈Ω

∣∣∣Pν [Xt = y ]− µ(y)
∣∣∣ = 0.
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Distance to equilibrium

The total variation distance: two probability measures α, β on Ω,

∥α− β∥TV := sup
A⊂Ω

|α(A)− β(A)| .

The distance to equilibrium

d(t) := max
x∈Ω

∥Pt(x , ·)− µ∥TV.

Given ε ∈ (0, 1), the ε−mixing time

tmix(ε) := inf {t ≥ 0 : d(t) ≤ ε} .

Notation: tmix := tmix(1/4).
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Markov chain sequence and cutoff
A sequence of Markov chains (Ωn,Ln, µn)n∈N with limn→∞ |Ωn| = ∞:

t
(n)
mix(ε): the associated ε−mixing time.

Q: How does t
(n)
mix(ε) grow in terms of n and ε?

Precutoff:

sup
ε∈(0, 1

2
)

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

< ∞.

Cutoff: for all ϵ ∈ (0, 1),

lim
n→∞

t
(n)
mix(ϵ)

t
(n)
mix(1− ϵ)

= 1. ⇔ lim
n→∞

dn
(
ct

(n)
mix

)
=

{
1 if c < 1,

0 if c > 1.

image from Levin and Peres
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Spectral gap of reversible chain
The detailed balance condition: if for all x , y ∈ Ω

µ(x)r(x , y) = µ(y)r(y , x). Then µL = 0.

Spectral gap: minimal nonzero eigenvalue of −L

⟨f , g⟩µ :=
∑
x∈Ω

µ(x)f (x)g(x), Varµ(f ) := ⟨f , f ⟩µ − ⟨f , 1⟩2µ,

gap := inf
Varµ(f )>0

−⟨f ,Lf ⟩µ
Varµ(f )

.

Relaxation time: trel :=
1

gap .

Letting µmin := minx∈Ω µ(x), for ε ∈ (0, 1) we have

trel log
1

2ε
≤ tmix(ε) ≤ trel log

1

2εµmin
,

lim
t→∞

1

t
log d(t) = −gap.

S.Yang Mixing time Ph.D defense 7 / 41



Chapters 2 and 3

Mixing time for an interface model
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The physical situation we are considering

= substrate/interface  interaction

substrate

interface

= external force

An interface is an element of

ΩN :=
{
ξ ∈ ZJ0,2NK

+ : ξ(0) = ξ(2N) = 0 and ∀x , |ξ(x)− ξ(x − 1)| = 1
}
.
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The equilibrium measure
Given ξ ∈ ΩN ,

H(ξ) :=
∑2N−1

x=1 1{ξ(x)=0} (# contacts with x−axis),

A(ξ) :=
∑2N−1

x=1 ξ(x): the area enclosed between ξ and the x-axis.

0 2N

N = 10 H(ξ) = 3 A(ξ) = 40
y

x

Given λ ≥ 0 and σ ≥ 0, define µ = µλ,σ
N the probability on ΩN :

µ(ξ) =
2−2NλH(ξ)e

σ
N
A(ξ)

ZN(λ, σ)
; ZN(λ, σ) := 2−2N

∑
ξ∈ΩN

λH(ξ)e
σ
N
A(ξ).
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Corner-flip/Heat Bath dynamics (ηt)t≥0 on ΩN

Each coordinate is updated at rate one.
When an update at x occurs at time t, ηt is sampled according to the
conditional equilibrium measure µλ,σ

N (· | ηt−(y), y ̸= x).

0

2N

exp( 2σ
N

)

1 + exp( 2σ
N

)

×

λ

λ + exp( 2σ
N

)

1

1 + exp( 2σ
N

)

exp( 2σ
N

)

λ + exp( 2σ
N

)

y

x

The measure µ satisfies the detailed balance condition, i.e.

µ(ξ)r(ξ, ξx) = µ(ξx)r(ξx , ξ).

Pξ: the distribution of the Markov chain (ηt)t≥0 starting from ξ.

Tλ,σ
N (ε): associated ε−mixing time.
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Presentation of our results for the interface model

(1) Properties of the model at equilibrium

(2) Cutoff when σ = 0 (Chapter 2)

(3) Slow/fast mixing and metastability (Chapter 3)
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Equilibrium for σ = 0 [Fisher 1984]

If σ = 0, the system undergoes a transition at λ = 2 between a pinned
phase and an unpinned phase. This transition can be seen when looking at
the free energy

lim
N→∞

1

2N
logZN(λ, 0) = log

(
λ

2
√
λ− 1

)
1{λ>2} =: F (λ).
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Absence of wall constraint / WASEP interfaces [Labbé ’18]
If there is no wall constraint (ξ(x) < 0 is allowed) and λ = 1, we have
typically under the equilibrium measure (u ∈ [0, 2])

ξ(⌈uN⌉)
N

=
1

σ
log

(
cosh(σ)

cosh(σ(1− u))

)
+ o(1).

0 2N

If Z̃N(σ) :=
1

22N

∑
ξ∈Ω̃N

e
σ
N
A(ξ) denotes the corresponding partition

function, we have

lim
N→∞

1

2N
log Z̃N(σ) = G (σ) :=

∫ 1

0
log cosh(σ(1− 2u))du.
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Equilibrium behavior

The two strategies to take benefit of the wall interaction and of the
external force are different and cannot be combined.

Proposition (Lacoin, Y. ’20)

We have for any λ ∈ (0,∞) and σ > 0

lim
N→∞

1

2N
logZN(λ, σ) = F (λ) ∨ G (σ).

(A) If G (σ) > F (λ), then ZN(λ, σ) ≍ 1√
N
e2NG(σ).

(B) If F (λ) ≥ G (σ), then ZN(λ, σ) ≍ e2NF (λ).

From this result we derive the detailed behavior of the paths.
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Free energy

f(λ, σ) := lim
N→∞

1

2N
logZN(λ, σ).

(log λ)-axis

σ-axis

0

1

2

3

log 2 4 6 8 10 12 14

f(λ, σ) = F (λ)

f(λ, σ) = G(σ)

f(λ, σ) = 0

F (λ) = G(σ) and λ > 2

λ = 2 and σ ≤ 0

λ ∈ [0, 2] and σ = 0
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Theorem: macroscopic shape

Mσ(u) =
1

σ
log

(
cosh(σ)

cosh(σ(1− u))

)
.

0 2N

C log N

F (λ) ≥ G(σ) Θ(N) contacts

NM( x
N
)

F (λ) < G(σ)

Θ(1) contacts

x

CN
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Dynamical polymer pinning model/WASEP

The problem of mixing time for interface with pinning or WASEP has been
studied in previous works.

When σ = 0, the mixing time is at most of order N2 logN
[Caputo, Martinelli, Toninelli ’08]:

e.g . Tλ,0
N ≍ N2 logN, and gap ≍ N−2 for λ ∈ [0, 2).

Without wall and pinning, [Levin, Peres ’16] [Labbé, Lacoin ’20]

∀ε ∈ (0, 1), T σ
N(ε) ≍ N2 logN.
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Our main result: cutoff (Chapter 2)

Understand the pattern of relaxation to equilibrium, and in particular
identify the mixing time.

Tλ,σ
N (ε) := inf{t : ∀ξ ∈ ΩN , ∥Pξ − µ∥TV ≤ ε}.

Theorem (Y, ’19 (cutoff))

When σ = 0 and λ ∈ [0, 1], for all ϵ ∈ (0, 1) we have

lim
N→∞

π2Tλ,0
N (ε)

4N2 logN
= 1.
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Our main result: partial cutoff (Chapter 2)

T̆λ,σ
N (ε) := inf{t : max(∥P∧ − µ∥TV, ∥P∨ − µ∥TV) ≤ ε}.

maximal path ∧

minimal path ∨

0 2N

y

x

Theorem ( Y, ’19 (Partial cutoff))

When σ = 0 and λ ∈ (1, 2), for all ϵ ∈ (0, 1) we have

lim
N→∞

π2T̆λ,0
N (ε)

4N2 logN
= 1.
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Our main result: λ > 2 and σ ≥ 0 (Chapter 3)

Theorem (Lacoin, Y. ’20)

When λ > 2 and σ ≥ 0, then there exists σc(λ) > 0 such that{
Tλ,σ
N ≤ NC if σ ≤ σc(λ),

Tλ,σ
N = e2NE(λ,σ)NO(1) if σ > σc(λ),

where σc(λ) and E (λ, σ) > 0 are explicit.

We believe when λ ∈ [0, 2] and σ ≥ 0, there exists some constant C

Tλ,σ
N ≤ NC .
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Heuristic for λ > 2 and σ ≥ 0
β: fraction of the largest excursion V (β) := −(1− β)F (λ)− βG (βσ)
(paths with only one large excursion of size 2βN: e−2NV (β).)

V (β)

β1
0

(A)

V (β)

β
0

1

(B)

V (β)

β
0

1

(C)

(A) If G (σ) + σG ′(σ) ≤ F (λ), then the pinned region can grow without
obstruction and the system should mix in polynomial time.

(B) If G (σ) ≤ F (λ) < G (σ) + σG ′(σ), then the system starting from the fully
unpinned state takes a long time to reach the fully pinned equilibrium state.

(C) If F (λ) < G (σ), then the system starting from the fully pinned state takes a

long time to reach the fully unpinned equilibrium state.
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V (β) = −(1 − β)F (λ) − βG(βσ)

V (β)

β1
0

(A)

V (β)

β
0

1

(B)

E

V (β)

β
0

E
1

(C)

Activation Energy

The size of the effective potential barrier to be overcome in case (B) and
(C ) is equal to

E (λ, σ) := F (λ) ∧ G (σ)− [(1− β∗)F (λ) + β∗G (β∗σ)]

with β∗ such that V (β∗) = maxβ∈[0,1] V (β).
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Our result: phase diagram (for λ > 2 and σ ≥ 0)

(log λ)-axis

σ-axis

0

1

2

3

log 2 2 4 6 8 10 12 14

F (λ) = G(σ)

G(σ) + σG ′(σ) = F (λ)

The rapidly mixing phase

( pinned and single well)

f(λ, σ) = F (λ)

The slow mixing phase

(pinned and double wells)

f(λ, σ) = F (λ)

The slow mixing phase

(unpined and double wells)

f(λ, σ) = G(σ)
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Metastability

Assuming E (λ, σ) > 0, let HN denote the domain of attraction of the
unstable local equilibrium of the dynamics:

HN :=

{
{ξ ∈ ΩN : Lmax(ξ) > β∗N} if G (σ) ≤ F (λ) < G (σ) + σG ′(σ),

{ξ ∈ ΩN : Lmax(ξ) ≤ β∗N} if F (λ) < G (σ),

where

Lmax(ξ) := max{y − x : ξ2x = 0, ξ2y = 0,∀z ∈ Jx , yK, ξ2z > 0}.

Theorem (Lacoin, Y. ’20)

We have
lim

N→∞
PµN(·|HN)

(
ηtTN

rel(λ,σ)
∈ HN

)
= exp(−t),

where TN
rel(λ, σ) = e2NE(λ,σ)NO(1) is the relaxation time of the system.
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Proof ingredients

Lower bound on mixing time follows directly from the heuristics using
bottleneck arguments.

For the upper bound, the hard part is to show that the system always
mixes fast within HN and H∁

N . The proof is intricate and relies on
chain decomposition argument [Jerrum et al. ’04].

Once fast mixing in each potential well is proved, the metastability
statement follows from a general meta-theorem [Beltran and Landim
’15].

S.Yang Mixing time Ph.D defense 26 / 41



Chapter 4

Mixing time of ASEP in a random
environment
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Setup

Given ω = (ωx)x with values in (0, 1), the exclusion process with k
particles in J1,NK with environment ω is a Markov chain:

1 N0 N + 1

× ω1

x

1 − ωx × 1 − ωN ×

y

ωy1 − ωy ×1 − ωz

z

(A) Each site is occupied by at most one particle (the exclusion rule).

(B) Each of the k particles performs a random walk such that a particle
at site x ∈ J1,NK{

jumps to site x + 1 at rate ωx for x ≤ N − 1,

jumps to site x − 1 at rate 1− ωx for x ≥ 2,

if the target site is not occupied.
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Assumptions

ω = (ωx)x is IID ( law: P, expectation: E).

Assume

E
[
log

1− ω1

ω1

]
< 0,

so that the random walk on Z is transient to the right.

Uniform ellipticity condition: ∃ α ∈ (0, 1/2) such that

P (ω1 ∈ [α, 1− α]) = 1.

Q: How does the mixing time tN,k,ω
mix grow in terms of N and k for

typical realization of ω?
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Presentation of our result: ASEP in random environment

(1) Related results (RWRE, SEP with ω ≡ p or ω = (ωx)x IID).

(2) Our result: tN,k,ω
mix grows like a power of N.

(3) Heuristic for our result: three mechanisms.

S.Yang Mixing time Ph.D defense 30 / 41



Related result: random walk in random environment on Z

x

ωx1 − ωx

Given (ωx)x , (Xt)t≥0: a continuous-time random walk on Z starting at 0.
[Solomon ’75] showed that

E[log 1−ω1
ω1

] = 0 ⇒ (Xt)t≥0 is recurrent,

E[log 1−ω1
ω1

] < 0 ⇒ limt→∞ Xt = ∞,

E[log 1−ω1
ω1

] > 0 ⇒ limt→∞ Xt = −∞.

Assuming E[log 1−ω1
ω1

] < 0, and set

λ = λP := inf

{
s > 0,E

[(
1− ω1

ω1

)s]
≥ 1

}
∈ (0,∞].

[Kesten, Kozlov, Spitzer ’75] showed that{
limt→∞

Xt
t = ϑP > 0, if λ > 1 (ballistic),

limt→∞
log(Xt)
log t = λ, if λ ∈ (0, 1] (subballistic) .
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Related results: many particles in homogenous environment

SSEP (ω ≡ 1
2): [Aldous ’83], [Wilson ’04], [Lacoin ’16]

tN,kN
mix ≍ (N2 log kN) = O(tN,1

mix logN).

ASEP (ω ≡ p ̸= 1
2): [Benjamini et al. ’05], [Labbé, Lacoin ’19]

tN,kN
mix ≍ N.
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Related result: one particle in random environment

When k = 1, [Gantert, Kochler ’18] showed that if E[log 1−ω1
ω1

] < 0,{
tN,1,ω
mix (ε) = [C (P) + o(1)]N, if λP > 1,

limN→∞
log tN,1,ω

mix
logN = 1

λP
, if λP ∈ (0, 1].

Potential V ω : N → R

V ω(x) :=

{
0, for x = 1,∑x

y=2 log
(
1−ωy

ωy−1

)
, for x ≥ 2.

The largest potential barrier: max1≤x<y≤N V ω(y)− V ω(x) ∼ (1/λ) logN.
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Related result: many particles in random environment

Assuming λ > 1 and limN→∞ kN/N = θ ∈ (0, 1), [Schmid ’19] showed:

When ess inf ω1 > 1/2, tN,kN ,ω
mix ≍ N by comparison.

When ess inf ω1 < 1/2, tN,kN ,ω
mix ≥ N1+δ for some δ > 0.

When ess inf ω1 = 1/2, then

lim inf
N→∞

tN,kN ,ω
mix (ε)/N = ∞ and tN,kN ,ω

mix (ε) ≤ CN(logN)3,

together with a quantitative lower bound if P[ω1 = 1/2] > 0.

Q: If ess inf ω1 < 1/2, how does tN,kN ,ω
mix grow?
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Our result

Theorem (Lacoin, Y. ’21)

Assuming E[log 1−ω1
ω1

] < 0, ess inf ω1 <
1
2 , k = Nβ+o(1) with β ∈ (0, 1] and

the uniform ellipticity condition, with high probability we have

c(α,P)Nmax(1, 1
λ
,β+ 1

2λ
)+o(1) ≤ tN,k,ω

mix ≤ NC(α,P).

Conjecture: Our lower bound is sharp.
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Phase diagram

The exponent of the mixing time with k = Nβ+o(1) particles

0 1 2 3

1
β−axis

1
λ
−axis

1
2

max
(
1, 1

λ
, 1
2λ

+ β
)

= 1

Ballistic begime

max
(
1, 1

λ
, 1
2λ

+ β
)

= 1
λ

One particle limitation

max
(
1, 1

λ
, 1
2λ

+ β
)

= 1
2λ

+ β

Flow limitation
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Typical configurations in equilibrium

{
Every site of J1,N − k − CK is vacant,

Every site of JN − k + C ,NK is occupied,
in equilibrium .

N − k + CN − k − C1 N

Figure: ◦: empty sites •••: particles

Figure: The minimal configuration ξmin
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1◦ Mass transport cannot be faster than ballistic

The lower bound: tN,k,ω
mix = Ω(N).

The time for (ηmin
t )t≥0 starting with ξmin := 1{1≤x≤k} to reach equilibrium.

1 Nk

Figure: The configuration ξmin.
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2◦ The leftmost particle is blocked by traps in the potential profile

N − k − C1 N

ξmin

Since ess inf ω1 < 1/2, V ω(x) =
∑x

y=2 log
(
1−ωy

ωy−1

)
is non-monotone and

max
1≤x<y≤N

V ω(y)− V ω(x) ∼ (1/λ) logN.

Then tN,k
mix = Ω(N

1
λ
+o(1)).
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3◦ Potential barrier creates bottleneck for the particle flow

N − k + CN − k − C1 N

ξmin

k
2

1 N

The time for a particle to flow out of the trap is roughly N
1
2λ , and then

tN,k
mix = Ω(Nβ+ 1

2λ
+o(1)).

∆1 : particle

∆2 : empty site

∆ = ∆1 + ∆2 = (1/λ) log N : trap depth

min max(∆1,∆2) = ∆/2
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Conclusion
Mixing time for an interface model Mixing time for ASEP in a random environment

• Cutoff λ ∈ [0, 1] and σ = 0

• Partial Cutoff λ ∈ (1, 2) and σ = 0

Thank you for your attention
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