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Abstract
By the dimension reduction idea, overshoot for randomwalks, coupling andmartingale argu-
ments, we obtain a simpler and easily computable expression for the first-order correction
constant between discrete harmonic measures for random walks with rotationally invariant
step distribution inR

d (d ≥ 2) and the corresponding continuous counterparts. This confirms
and extends a conjecture in Jiang and Kennedy (J Theor Probab 30(4):1424–1444, 2017),
and simplifies the related expression of Wang et al. (Bernoulli 25(3):2279–2300, 2019). Fur-
thermore, we propose a universality conjecture on high-order corrections for error estimation
between generalized discrete harmonic measures and their continuous counterparts, which
generalizes the universality conjecture of the first-order correction in Kennedy (J Stat Phys
164(1):174–189, 2016); and we prove this conjecture heuristically for the rotationally invari-
ant case, and also provide several examples of second-order error corrections to check the
conjecture by a numerical simulation argument.

Keywords Harmonic measure · Random walk · High-order correction · Overshoot ·
Coupling
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1 Introduction

Universality is an important topic in statistical physics and probability theory. For instance,
the central limit theorem (CLT) and Donsker’s invariance principle are kinds of universality
in probability theory. Based on Donsker’s invariance principle, can further research be done
on universality? Indeed, the first-order corrections for error estimation between discrete
harmonic measures and their continuous counterparts happens to be precisely such a kind of
universality problem.

Motivated by Kennedy [23] and Jiang and Kennedy [19] in R
2 (and also Wang et al. [31]

in R
d with d ≥ 2), in this paper, we investigate the universality for the first or high-order

corrections between discrete and continuous harmonic measures in R
d with d ≥ 1.

To begin, denote 0 = (0, · · · , 0) ∈ R
d , x = (x1, · · · , xd) for any x ∈ R

d , and N =
{1, 2, 3, · · · }. Let {Xi }∞i=1 be an i.i.d sequence of random variables in R

d with common
rotationally invariant step distribution μ on unit open (or closed) ball B

d ∈ R
d satisfying

μ{0} = 0 (here μ{0} = 0 can be replaced by μ{0} < 1. Indeed, for any measurable subset A

of B
d , note that the random walks {δSμ

n }n≥0 and
{
δSμ̂

n

}
n≥0

have the same discrete harmonic

measure if we replace μ̂ by 1
1−μ({0})μ(A \ {0}).

Write Xi =
(
X (1)
i , · · · , X (d)

i

)
. Assume Var

(
X (1)
1

)
= κ ∈ (0,∞). For any X0 ∈ R

d , we

define the random walk Sμ = {Sμ
n }n≥0 on R

d , d ≥ 2 with step distribution μ starting at X0

by

Sμ
n =

n∑
k=0

Xk, n ≥ 0. (1.1)

Let {Yi }∞i=1 be an i.i.d sequence with the common distribution as X (1)
1 , which is independent

of Sμ. Define an one-dimensional random walk Rμ = {Rμ
n }n≥0 on R starting at Y0 by

Rμ
n =

n∑
k=0

Yk, n ≥ 0.

It is well-known that as δ → 0, rescaled process
{
δSμ

�δ−2t�
}
t≥0

converges in law to

{B(κt)}t≥0, where �x� is the integer part of x ∈ R and B = {B(t)}t≥0 is the d-dimensional

standard Brownianmotion starting at 0; and
{
δRμ

�δ−2t�
}
t≥0

converges in law to 1-dimensional

Brownian motion {B(κt)}t≥0.

To continue, let D ⊂ R
d (d ≥ 1) be an open simply-connected bounded domain with

smooth boundary ∂D and 0 ∈ D. For a, b ∈ R and a < 0 < b, define � = (a, b) ⊂ R. In
the one-dimensional case, we use � instead of D to facilitate the distinction between one-
dimensional and high-dimensional cases. Denote byP

x the law of a stochastic process started
at x , andE

x the corresponding expectation. Here “a stochastic process”may be randomwalks
Sμ and Rμ, and Brownian motion B. Put

τD = inf{t ≥ 0 : B(t) /∈ D}.
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Let ω(x, dz; D) be the continuous harmonic measure for B = {B(t)}t≥0 exiting from D
when staring at x ∈ D, that is,

ω(x, dz; D) = P
x (B(τD) ∈ dz). (1.2)

For one-dimensional case, let D = � and

ω(x, z;�) = P
x (B(τ�) = z), z ∈ {a, b}. (1.3)

In fact, (1.3) is also known as a special case of Gambler’s ruin probability.
Now we turn to the discrete-time setting. Without loss of generality, in the rest of this

paper we will always assume Sμ
0 = 0 (resp. Rμ

0 = 0), unless otherwise specified. Let

TD = min{n ≥ 0 : δSμ
n /∈ D} (resp. T� = min{n ≥ 0 : δRμ

n /∈ �}).
Define discrete harmonic measure ωδ(0, �; D) (resp. ωδ(0, �;�)) for {δSμ

n }n≥0 (resp.
{δRμ

n }n≥0) exiting from D (resp. �) by

ωδ(0, �; D) = P

(
δSμ

TD
∈ �

)
, ∀ measurable � ⊆ ∂D, (1.4)

(
resp. ωδ(0, z;�) = P

(
δRμ

T�
= z

)
, ∀ z ∈ ∂� = {a, b},

)
(1.5)

where δSμ
TD

(resp. δRμ
T�
) is the point on ∂D (resp. ∂�) with the smallest distance to δSμ

TD

(resp. δRμ
T�
). Note that the choice for δSμ

TD
is almost surely unique when δ is sufficiently

small.
In statistical physics, there is much theoretical or numerical evidence showing that a

number of discrete harmonic measures for random walks (not necessarily Markovian) con-
verge weakly to the corresponding continuous counterparts. Refer to [10, 18, 19, 22, 23, 26]
and references therein. Then it is natural to ask how quickly or in what form these discrete
harmonic measures converge weakly to the corresponding continuous counterparts. This
question originated from the study of harmonic measure error corrections for 2-dimensional
random walks [simple random walk (SRW), nearest neighbor random walk not allowed to
backtrack (RWNB) and smart kinetic walk (SKW) on square, triangular and hexagonal planar
lattices] by Kennedy [23] in 2016. More specifically, there are clear numerical evidences to
support the following universality conjecture:

lim
δ→0

1

δ

[
ω
M,L
δ (0, dz; D) − ω(0, dz; D)

]
= CM,LρD(0, z) |dz|, (1.6)

whereω
M,L
δ (0, dz; D) is the discrete harmonicmeasure averagedover orientations (rotations)

for the random walks on planar lattices. The reason for averaging over the orientation of
the lattice is that Brownian motion is rotationally-invariant and the discrete models are not
rotationally-invariant; and in a certain sense, it is natural to take an average over the orientation
of the lattice when considering the first-order harmonic measure correction universality.
ρD(0, ·) is a universal measurable function on ∂D independent of the random walks and
lattice (this indicate that there is a sort of universality for first-order correction), and CM,L is
a constant dependent on models and lattices but not dependent on the domain. For the details,
see [23, Conjecture 1].

The conjecture (1.6) was motivated heuristically in [23] and is still open, and the exact
value of the CM,L is unknown. As a contrast to the discrete setting for random walks, in the
continuous situation, Jiang and Kennedy [19, Proposition 1] proved rigorously the first-order
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correction universality conjecture for uniform step μ on B
2 with correction constant

K = 16

45π
+ 8

π

∫ π/2

0
(sin2 θ − (sin4 θ)/3 − θ cos θ sin θ)Ei cos θ (|Im(Sμ

TH
)|)dθ,

where Ei cos θ is the conditional expectation of {Sμ
n }n≥0 given S0 = i cos θ , Im(z) is the

imaginary part of z and TH := inf{n ≥ 0 : Sμ
n /∈ H}. Monte Carlo simulation of this

cμ gives 0.2647664 ± 0.0000026 (note [19] used K instead of cμ here); then Wang et al.
[31] extended Jiang and Kennedy’s conclusion to high dimensional first-order correction of
discrete harmonic measures as follows: For the randomwalk Sμ withμ rotationally invariant
on B

d (d ≥ 2), and μ{0} < 1, in the sense of the weak convergence topology,

lim
δ→0

1

δ
[ωδ(0, dz; D) − ω(0, dz; D)] = cμρD(0, z) |dz|, (1.7)

where cμ is a constant depending only on μ and ρD(0, z) is a measurable function on ∂D
independent of μ, and |dz| is the Lebesgue measure on ∂D.

Please note that cμ given by (1.7) in [31] and K given above are both very complicated.
There is usually no valid method for calculating the “expectation term” associated with them.
From [19, Remark 4], Jiang and Kennedy conjectured that there seems to be a much simpler
expression of K (namely cμ here). From view points of both theoretic analysis and numerical
simulations, it is of interest to seek for a much simpler, beautiful and computable expression
for cμ. This is one aim of our paper. In this paper, we obtain such an expression for cμ withμ

being rotationally invariant onB
d (d ≥ 2), which is given by (1.10) and implied by the proofs

of Theorems 1.1 and 1.2. The precise calculation of cμ requires the study of the overshoot of
random walk, roughly speaking, the overshoot of random walk is the quantity of a random
walk excess over the boundary. More details with respective to overshoot of random walk
refer to [1, 12, 16] and Sect. 2.4.

Besides of our theoretic analysis results (Theorems1.1 and1.2), another aimof this paper is
to understand further the universality for the first-order and higher-order corrections between
discrete harmonic measures and their continuous counterparts by a heuristical argument
and numerical simulations. The heuristical argument and numerical simulation evidence
lead us to believe that the universality described in Conjectures 3.2 and 3.3 is true. To
the best of our knowledge, there are no research conclusions or conjectures that take into
account the mentioned high-order corrections in the existing references. In fact, Conjectures
3.2 and 3.3 represent generalizations of first-order corrections between discrete harmonic
measures and their continuous counterparts, to be more precise, Conjecture 3.2 is for the
rotationally invariant step distributions μ and is proved heuristically, and Conjecture 3.3 is
for the generalized discrete harmonic measures (e.g. step distributions μ are not necessarily
i.i.d, not necessarily rotationally invariant, even the scaling limit of the random walk needs
not be a Brownian motion).

Let Tl := min
{
n ≥ 0 : Rμ

n ≥ l
}
, l ∈ R. Define hμ(l) on [0, 1] by

hμ(l) =
∫

[l,1]
�(d/2)√
π�( d−1

2 )

[
(r2 − l2)(d−1)/2

(d − 1)rd−2 + 2F1

(
1

2
,
3 − d

2
; 3
2
; l

2

r2

)
l2

r

]

×dν(r) − l

2
ν([l, 1]),
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where ν([0, r ]) = ν(r) := μ({w : |w| ≤ r}), r ∈ [0, 1] and 2F1(a, b; c; z) is the hypergeo-
metric function given by

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n! ,

and (x)n = x(x + 1) · · · (x + n − 1) is the Pochhammer symbol. Let

cμ = 2

κ

∫ 1

0

(
l + E

0[
∣∣∣Rμ

Tl
− l

∣∣∣]
)
hμ(l) dl. (1.8)

Our theoretical results are stated in detail as follows:

Theorem 1.1 The first-order harmonic measure correction constant cμ for random walk
{δSμ

n }n≥0 ∈ R
d , d ≥ 2 is the same as that of random walk for {δRμ

n }n≥0 ∈ R. More
precisely, for cμ specified in (1.8), both (1.7) and the following equality hold:

lim
δ→0

1

δ
[ωδ(0, z;�) − ω(0, z;�)] = cμρ�(0, z), z ∈ {a, b},

where ω(0, z;�) and ωδ(0, z;�) are given respectively in (1.3) and (1.5), and

ρ�(0, z) =
{ −a−b

(b−a)2
, z = a,

a+b
(b−a)2

, z = b.

Theorem 1.1 implies that the calculation of the first-order harmonic measure correction
constant for a high-dimensional random walk can be solved by transforming it into a one-
dimensional random walk. This insight, which we refer to as the dimension reduction idea,
is important in our paper.

To continue, let’s recall two concepts, nonlattice and strong nonlattice, for R-valued
random variables as follows. Let ξ be a random variable taking values in R, and denote
its distribution by η. Say ξ is lattice (arithmetic) if η({0,±a,±2a, · · · }) = 1 for some
a ∈ (0,∞), and otherwise nonlattice (non-arithmetic). It is known that ξ is nonlattice if and
only if

φ(t) =
∫

R

e
√−1 t xη(dx) = 1, t = 0.

Say ξ is strongly nonlattice if

lim inf|t |→∞ |1 − φ(t)| > 0.

Theorem 1.2 Suppose Xi ∈ R, i ∈ N are symmetric, nonlattice and i.i.d. random variables
with E[X1] = 0 and E

[
X2
1

] = κ ∈ (0,∞). Let Rn = X1 + · · · + Xn. Set

ωδ(0, z,�) := P
(
δRT� = z

)
, z ∈ {a, b}

for the discrete harmonic measure of δRn, and ω(0, z,�) := P (B(τ�) = z) for the contin-
uous harmonic measure. Write Tl = min{n ≥ 1 : Rn ≥ l}, and

c∗ = lim
l→+∞ E

0 [RTl

]
> 0, ρ

(n)
� (0, z) =

{
(−2)n−1 −a−b

(b−a)n+1 , z = a,

(−2)n−1 a+b
(b−a)n+1 , z = b,

n ∈ N.

(i) For any z ∈ {a, b},
lim
δ→0

1

δ
(ωδ(0, z,�) − ω(0, z,�)) = c∗ρ(1)

� (0, z).
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(ii) Assume further Xi ∈ R, i ∈ N are also strong nonlattice, and P(X1 ≤ t) = o
(
er1t

)
as

t → −∞ for some constant r1 ∈ (0,∞). Then for some r ∈ (0,∞), as δ → 0,

ωδ(0, z;�) = |a| + b − |z| + c∗δ + o(e− r
δ )

|a| + b + 2c∗δ + o(e− r
δ )

, z ∈ {a, b},

which implies that for any n ∈ N,

lim
δ→0

1

δn

(
ωδ(0, z,�) − ω(0, z,�) −

n−1∑
k=1

ck∗ρ
(k)
� (0, z)δk

)
= cn∗ρ

(n)
� (0, z), z ∈ {a, b}.

(1.9)

Remark 1.3 Let

H
d :=

{
(x1, x2, · · · , xd) ∈ R

d : xd > 0
}

, THd := min
{
n ≥ 0 : Sμ

n /∈ H
d
}

,

� := (0, · · · , 0, l) ∈ R
d .

(i) It is worth noting that randomwalk Rμ
n in Theorem 1.1 have a probability density function

for their step distributions. Hence, Rμ
n in Theorem 1.1 can be seen as a special case of Rn in

Theorem 1.2. If step distribution of Rμ
n has same law as that of Rn . Theorems 1.1 and 1.2

imply that the first-order correction constant cμ(i.e. (1.8)) can be expressed exactly as

cμ = 2

κ

∫ 1

0

(
l + E

0[
∣∣∣Rμ

Tl
− l

∣∣∣]
)
hμ(l) dl = lim

l→+∞ E
�
[∣∣∣Sμ

T
Hd

− Sμ
T
Hd

∣∣∣
]

= lim
l→+∞ E

0
[
Rμ
Tl

]
.

(1.10)
This remark confirms the conjecture in Kennedy and Jiang [19, Remark 4]: K = cμ is

exactly given by the much simpler expression,

K = lim
l→+∞ E

0
[
Rμ
Tl

]
=
∫ ∞

0
− 1

πx2
log

⎛
⎝8

(
1 − 2J1(x)

x

)

x2

⎞
⎠ dx = 0.264766405 · · · .

Hereμ is the uniform distribution onB
2, J1(z) is the Bessel function of the first kind of order

1. For the calculation process of K , please skip to Corollary 2.12.
(ii) In Theorem 1.2 (ii), if we replace the condition P(X1 ≤ t) = o(er1t ) (t → −∞) with

E(|X1|k) < ∞ for some k ≥ 2, then by [5, Theorem 1], similarly to Theorem 1.2 (ii), we
can prove that as δ → 0,

ωδ(0, z;�) = |a| + b − |z| + c∗δ + o(δk−2)

|a| + b + 2c∗δ + o(δk−2)
, z ∈ {a, b}.

In this case (1.9) holds for n ≤ k − 1.

(iii) As a special case, in Theorem 1.2 (ii), if X1 has density 1
2λ exp

(
−|x |

λ

)
, x ∈ R with

λ ∈ (0,∞), then from Proposition 2.16, for any δ ∈ (0,∞),

ωδ(0, z;�) = |a| + b − |z| + λδ

|a| + b + 2λδ
, z ∈ {a, b}.

(iv) It is easy to verify that Theorem 1.1 also holds for Xi which is supported in

B
d
R := {x |x ∈ R

d , |x | < R} (d ≥ 2, 0 < R < +∞)

instead of B
d . Indeed, by multiplying Xi by 1/R, it degenerate into our model. We believe

Theorem 1.1 also holds for Xi is supported in R
d , d ≥ 2. However, it requires a good

123
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definition of a randomwalk exiting from the boundary of the domain. For example, especially
when |δSμ

TD
| = +∞, one can uniformly choose a point on the boundary as the hitting point

δSμ
TD

. This is important because when δ is sufficiently small, the choice of δSμ
TD

may not be
almost surely unique, but it could be uniquely determined under probabilistic convergence.

The paper is organized as follows. In Sect. 2, we recall firstly some preliminary facts
on Green’s function, Poisson kernel, harmonic measures, overshoot of random walk and so
on; then after giving a series of lemmas on discrete and continuous harmonic measures, we
prove Theorems 1.1 and 1.2. In Sect. 3, we suggest a conjecture for high-order error approx-
imation of generalized discrete harmonic measures and prove the conjecture heuristically
for the rotationally invariant case. In Sect. 4, some examples of first-order and second-order
error simulations for discrete harmonic measures are given. Finally, in Sect. 5, we give our
concluding remarks.

2 The Proof of Main Theorems

2.1 Preliminaries

First, we review some facts about the Green’s function and Poisson kernel.
Recall of � = (a, b) ∈ R, for small δ > 0, let

�2 = {z ∈ � : dist(z, ∂�) < δ}, �3 = {z ∈ R \ � : dist(z, ∂�) < δ}. (2.1)

Set x, y ∈ R
d , the free-space Green’s function in R

d , d ≥ 1 is known as the Newton kernel,
which is defined by

G(x, y) :=
{

1
2π log(|x − y|), d = 2;
−�(d/2−1)

4πd/2 |x − y|2−d , d = 2.

Then the Laplace operator of G(x, y) satisfies

�G(x, y) = δ(x − y),

where δ(x) is the Dirac delta function.

Definition 2.1 Given z, w ∈ D ⊂ R
d , d ∈ N and t > 0, let pD(t, z, w) be the density of

B(t ∧ τD) assuming B(0) = z, that is

pD(t, z, w) := lim
ε→0

P
z (|B(t) − w| ≤ ε; t < τD)

Vdεd
,

where Vd is the volume of B
d , i.e. Vd = πd/2

�(d/2+1) . Let pD(0, z, ·) be the Dirac delta function
at z and we set pD(t, z, w) = 0 if either z or w is not in D.

Green’s function for D ⊂ R
d . The Green’s function for the Laplacian with Dirichlet

boundary conditions on D or the Green’s function for Brownian motion stopped at ∂D, is
defined by

GD(z, w) := 1

2

∫ ∞

0
pD(t, z, w) dt, z, w ∈ D,

where the multiplicative factor 1
2 is chosen for convenience.

123
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Lemma 2.2 Given D ⊂ R
d , d ∈ N, GD(z, ·) is the unique harmonic function on D\{z} such

that GD(z, w) → 0 as w → ∂D, and GD(z, w) can be expressed as

GD(z, w) =
⎧⎨
⎩

− 1
2π

(
log(|z − w|) − E

w
[
log |B(τD) − z|]) , d = 2;

�(d/2−1)
4πd/2

(|z − w|2−d − E
w
[|B(τD) − z|2−d]) , d = 2.

Proof For d = 2, see the Lemma 3.37 in [27]. The cases d = 2 can be derived by the
argument similar to that of case d = 2. ��

For a fixed z ∈ D ⊂ R
d and w ∈ D, we set an auxiliary function

h(z, w) =
⎧
⎨
⎩

1
2π E

w
[
log |B(τD) − z|] , d = 2;

−�(d/2−1)
4πd/2 E

w
[|B(τD) − z|2−d] , d = 2.

Then h(z, ·) is a harmonic function on D, which is the solution to the Dirichlet problem for
the boundary value given by

ϕ(w) =
⎧
⎨
⎩

1
2π log(|z − w|), d = 2, w ∈ ∂D;
−�(d/2−1)

4πd/2 |z − w|2−d , d = 2, w ∈ ∂D.

Poisson kernel. Given D ⊂ R
d with smooth boundary ∂D, if z ∈ D, w ∈ ∂D, KD(x, z) is

the Poisson kernel in D and may be defined as the derivative of the Green function GD(z, w)

in the direction nw, i.e.,

KD(z, w) := ∂GD(z, w)

∂nw

,

where nw is the inward unit normal at w ∈ ∂D.
It is known that for fixed x ∈ D, ω(x, dz; D) is absolutely continuous with respect to

|dz|, the Lebesgue measure on ∂D. More precisely, for d-dimensional case(d ≥ 2),

ω(x, dz; D) = KD(x, z) |dz|;
For one-dimensional case, let D = �,

ω(x, z;�) = K�(x, z) = P
x (B(τ�) = z), z ∈ {a, b}.

Refer to[14, 15, 17, 21, 27] for more backgrounds and details regarding Green function and
the Poisson kernel.

For any bounded function g on ∂�, consider the following Dirichlet problem:
{

� f (z) = 0, z ∈ �,

f (z) = g(z), z ∈ ∂�.

The unique solution to the equation above can be written as

f (z) =
∑

w∈{a,b}
g(w) ω(z, w;�) = g(b) − g(a)

b − a
z + g(a)b − g(b)a

b − a
. (2.2)

Obviously, f (z) is defined for any z ∈ R. Let υ be the step distribution of {Rμ
n }n≥0, so υ is

a probability measure on [−1, 1]. The generator �δ for the random walk {δRμ
n }n≥0 is given

by

�δH(z) =
∫

[−1,1]
[H(z + δw) − H(z)] dυ(w), (2.3)

123
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for any bounded measurable function H on R. Consider the following discrete Dirichlet
problem:

{
�δ fδ(z) = 0, z ∈ �,

fδ(z) = g(̃z), z ∈ �3; (2.4)

where �3 is given by (2.1), and z̃ ∈ ∂� satisfies |̃z − z| = min{|ζ − z| : ζ ∈ ∂�}. Let
ωδ(z, w;�) be discrete harmonic measure for {δRμ

n }n≥0 exiting from w when staring at
z ∈ �. It is easy to see that the function fδ defined by

fδ(z) =
∑

w∈{a,b}
g(w) ωδ(z, w;�) (2.5)

is the unique solution to (2.4). The uniqueness follows from the maximum principle.
Recall that μ is rotationally invariant on B

d (d ≥ 2) with μ({0}) = 0. Then the k-
fold convolution υk with k ≥ 1 is absolutely continuous with respect to the 1-dimensional
Lebesgue measure. Define the transition probability density for the randomwalk {δRμ

n }n≥0 :
pδ(0, x, y) = δ(x − y);
pδ(n, x, y) = lim

ε→0

P
x (|δRμ

n − y| ≤ ε)

2ε
, n ∈ N, (2.6)

Likewise, define the transition probability density for {δRμ
n }n≥0 killed on exiting from �

as follows: For any x ∈ � and y ∈ R,

p�,δ(0, x, y) = δ(x − y);
p�,δ(n, x, y) = lim

ε→0

P
x (|δRμ

n −y|≤ε,n<T�)
2ε , n ∈ N.

Here p�,δ(n, x, y) does exist by (2.6) for n ∈ N.
The killed discrete Green function is defined by

Gδ(x, y) =
∞∑
n=0

p�,δ(n, x, y), x, y ∈ �.

2.2 Some Lemmas

An argument similar to [19, Lemma 3] shows that the following Lemma 2.3 holds.

Lemma 2.3 For any bounded function g(x), x ∈ ∂�, then we obtain

fδ(0) − f (0) =
∫

�2

Gδ(0, z)�δ f (z) dz. (2.7)

Define potential kernel aδ(x) for the random walk {δRμ
n }n≥0 by

aδ(x) =
∞∑
n=1

[pδ(n, 0, 0) − pδ(n, 0, x)] , x ∈ R (2.8)

For convenience, we write a(x) := a1(x), p(n, x, y) := p1(n, x, y). From the (2.6) and
(2.8), it is easy to verify that a(x/δ) = δaδ(x).
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Lemma 2.4 a(x) is well-defined, and there exists a constant C0 depending on μ such that as
|x | → ∞,

a(x) = |x |
κ

+ C0 + O
(|x |−1) ,

where the constant in big O term only depends on μ.

Proof The lemma follows from the analogous argument of Lemma 2.4 in [31]. ��
Lemma 2.5 For any x, y ∈ �,

G�(x, y) = −|x − y|
2

+ 1

2

(x − a)(b − y) + (b − x)(y − a)

b − a
.

Proof According to the Lemma 2.2, the proof is trivial. ��
To avoid abuse of notation, for a 1-dimensional inward unit normal nx at x ∈ ∂�, we can

assume:

nx =
{
1, x = a;
−1, x = b.

Corollary 2.6 If |a|, b > δ, for l ∈ [0, δ],

G�(0, x + lnx ) = lK�(0, x) =
{

b
b−a l, x = a;
−a
b−a l, x = b.

Proof This corollary follows immediately from Lemma 2.5. ��
Lemma 2.7 Define the following function in (l, δ) with 0 ≤ l ≤ δ :

hμ(l, δ) :=
∫

[l/δ,1]

{
�(d/2)√
π�( d−1

2 )

[
(δ2r2−l2)(d−1)/2

(d − 1)(δr)d−2 +2F1

(
1

2
,
3−d

2
; 3
2
; l2

δ2r2

)
l2

δr

]
− l

2

}

×dν(r),

where 2F1(a, b; c; z) is the hypergeometric function and ν(r) := μ({w : |w| ≤ r}), r ∈
[0, 1]. Let f (x), x ∈ R be given by (2.2). If |a|, b > δ, for l ∈ [0, δ], then

�δ f (x + lnx ) = hμ(l, δ)
∂ f (x)

∂nx
.

Proof For w = (x1, x2, · · · , xd) ∈ R
d(d ≥ 2), we introduce the d-dimensional spherical

polar coordinates transform:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 = r sin(ϕ1) · · · sin(ϕd−2) sin(ϕd−1),

x2 = r sin(ϕ1) · · · sin(ϕd−2) cos(ϕd−1),
...

...

xd−1 = r sin(ϕ1) cos(ϕ2),

xd = r cos(ϕ1),

(2.9)

where 0 ≤ r < ∞, 0 ≤ ϕd−1 ≤ 2π , 0 ≤ ϕi ≤ π, 1 ≤ i ≤ d − 2. Then the corresponding
Jacobian determinant Jd(r) := Jd(ϕ1, · · · , ϕd−1, r) satisfies that

Jd(r) = ∂(x1, · · · , xd−1, xd)

∂(ϕ1, · · · , ϕd−1, r)
= rd−1(sin ϕ1)

d−2(sin ϕ2)
d−3 · · · sin ϕd−2. (2.10)
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For the convenience of calculation, for any w ∈ B
d , write ρ := ρ(r , ϕ1, ϕ2, · · · , ϕd−1) for

w in the spherical polar coordinates. We rewrite dμ(w) as the form of spherical coordinates:

dμ(w) = dμ(r , ϕ1, · · · , ϕd−1) = �(d/2)

2πd/2rd−1 dν(r)dϕ1 · · · dϕd−1, (2.11)

(r , ϕ1, · · · , ϕd−1) ∈ [0, 1] × [0, π)d−2 × [0, 2π).

Recall the fact thatμ is a common rotationally invariant probabilitymeasure onB
d ∈ R

d , d ≥
2 such that μ{0} = 0. Here we only prove the case for d ≥ 3, since the proof is similar for
the case d = 2.

Notice (2.11), and recall the definition of �δ f in (2.3) and (2.4). In order to simplify the
calculation, let f̃ (x) := f (x) with x = (x, x2, · · · , xd) ∈ R

d , hence we get

nx =
{

(1, 0, · · · , 0), x = (a, x2, · · · , xd);
(−1, 0, · · · , 0), x = (b, x2, · · · , xd).

Therefore,

�δ f (x + lnx ) =
∫

Bd

[
f̃ (x + lnx + δw) − f̃ (x + lnx)

]
dμ(w)

=
∫ 1

0

∫ 2π

0

∫ π

0
· · ·

∫ π

0

[
f̃ (x + lnx + δρ) − f̃ (x + lnx)

]
Jd(r) dμ(r , ϕ1, · · · , ϕd−1)

=
∫

[0,l/δ)

∫ 2π

0

∫ π

0
· · ·

∫ π

0

[
f̃ (x + lnx + δρ) − f̃ (x + lnx)

]
Jd(r) dμ(r , ϕ1, · · · , ϕd−1)

+
∫

[l/δ,1]

∫ 2π

0

∫ π

0
· · ·

∫ π

0

[
f̃ (x+lnx+δρ) − f̃ (x + lnx)

]
Jd(r) dμ(r , ϕ1, · · · , ϕd−1)

=
∫

[l/δ,1]

∫ 2π

0

∫ π

0
· · ·

∫ π

0

[
f̃ (x + lnx + δρ) − f̃ (x + lnx)

]
Jd(r) dμ(r , ϕ1, · · · , ϕd−1)

=
∫

[l/δ,1]

∫ 2π

0

∫ π

0
· · ·

∫ π/2+arcsin
(

l
δr

)

0

[
f̃ (x + lnx + δρ) − f̃ (x + lnx)

]

×Jd(r) dμ(r , ϕ1, · · · , ϕd−1)

+
∫

[l/δ,1]

∫ 2π

0

∫ π

0
· · ·

∫ arccos
(

l
δr

)

0

[
f̃ (x + lnx − δρ) − f̃ (x + lnx)

]

×Jd(r) dμ(r , ϕ1, · · · , ϕd−1)

=: I1(x, l) + I2(x, l).

Notice the fact that ∂ f̃ (x)
∂nx

= ∂ f (x)
∂nx

and ∂2 f (x)
∂n2x

= ∂2 f (x)
∂n2x

= 0, which implies that the O(δ2)

vanish in I1, I2. A basic calculation shows

I1(x, l) = ∂ f (x)

∂nx

∫

[l/δ,1]

∫ 2π

0

∫ π

0
· · ·

∫ π/2+arcsin
(

l
δr

)

0
δr cos(ϕ1)×Jd (r) dμ(r , ϕ1, · · · , ϕd−1)

= ∂ f (x)

∂nx

∫

[l/δ,1]
�(d/2)√
π�( d−1

2 )

(δ2r2 − l2)(d−1)/2

(d − 1)(δr)d−2
dν(r).
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Likewise, we have that

I2(x, l) = ∂ f (x)

∂nx

∫

[l/δ,1]

∫ π

0
· · ·

∫ arccos
(

l
δr

)

0
−lJd(r)

�(d/2)

2πd/2(δr)d−1 × dϕ1 · · · dϕd−2dν(r)

= ∂ f (x)

∂nx

∫

[l/δ,1]

∫ arccos
(

l
δr

)

0
−l

�(d/2)√
π�( d−1

2 )
sind−2(ϕ1) dϕ1dν(r)

= ∂ f (x)

∂nx

∫

[l/δ,1]
�(d/2)√
π�( d−1

2 )
2F1

(
1

2
,
3 − d

2
; 3
2
; l2

δ2r2

)
l2

δr
− l

2
dν(r).

The last equation holds by a simple computation as that of Lemma 2.8 in [31]. This completes
the proof of lemma. ��

The following lemma is an estimation of Green’s function Gδ(0, z) near the boundary
of the domain ∂�, more estimation of discrete Green’s functions for discrete-state random
walks on different lattices or domains refer to [3, 7, 13, 19, 24, 31].

Lemma 2.8 Assume (−δ, δ) ⊂ �, x ∈ ∂�. Then for any l ∈ [0, δ], as δ → 0,

δ2Gδ(0, z) − 2

κ
K�(0, x)

(
l + E

0
[
|δRμ

Tl
− l|

])
= O

(
δ2
)
,

where z = x + lnx ∈ �2 and the big O term depends on � and μ.

Proof The proof of the lemma is analogue to that of Lemma 5 and Proposition 2 in [19]
and based on some new estimations, such as the potential kernel aδ(x) and the solution of
one-dimensional discrete Dirichlet problem, and so on.

First, we need to show that there exists a constant C > 0 depending on μ but not on δ

such that ∣∣∣∣δ2Gδ(0, z) − 2

κ
G�(0, z)

∣∣∣∣ ≤ Cδ

holds uniformly in z ∈ � with |z| > δ. For z ∈ R, let Hδ(z) = δ2 p�,δ(0, 0, z) − δ[a(z/δ) −
C0], define

eδ(z) := δ2Gδ(0, z) − Hδ(z)

= δ2
∞∑
k=1

p�,δ(k, 0, z) + δ[a(z/δ) − C0], z ∈ R.

Recall of υ in (2.3), by the Markov property for {δRμ
n }n≥0, we get

p�,δ(k, x, y) =
∫

[−1,1]
p�,δ(k − 1, x, y + δξ)dυ(ξ), x, y ∈ �, k ∈ N.

and by the Fubini theorem, for any z ∈ �,

eδ(z) = δ2 p�,δ(1, 0, z) + δ2aδ(z) − δC0 + δ2
∞∑
k=2

∫

[−1,1]
p�,δ(k − 1, 0, z + δξ)dυ(ξ)

= δ2 p�,δ(1, 0, 0) + δ2
∫

[−1,1]
aδ(z + δξ)dυ(ξ)

−δC0 + δ2
∫

[−1,1]

∞∑
k=1

p�,δ(k, 0, z + δξ)dυ(ξ)
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=
∫

[−1,1]
eδ(z + δξ)dυ(ξ).

According to the definition of eδ(z), it can be easily verified that eδ(z) = |z|
κ

+O
(
δ2/|z|) , z ∈

�3. So we obtain that
{

�δeδ(z) = 0, z ∈ �,

eδ(z) = |z|
κ

+ O
(
δ2/|z|) , z ∈ �3.

(2.12)

Recall Lemma 2.5, defineψ(z) := G�(0, z)+ |z|
2 = 1

2
−a(b−z)+b(z−a)

b−a ,ψ(z) can be extended

to a harmonic function in domain containing � ∪ �3. Indeed, ψ(z) is the harmonic function
of z ∈ � satisfying

{
�ψ(z) = 0, z ∈ �,

ψ(z) = 1
2

−a(b−z)+b(z−a)
b−a , z ∈ �3.

(2.13)

Subtracting 2
κ
× (2.13) from (2.12), we get

{
�δ

[
eδ(z) − 2

κ
ψ(z)

] = 0, z ∈ �,

eδ(z) − 2
κ
ψ(z) = O

(
δ2/|z|) , z ∈ �3.

(2.14)

Note that we assumed (−δ, δ) ⊂ �, then the maximum principle for �δ implies that

eδ(z) − 2

κ
ψ(z) = O(δ), z ∈ �.

Therefore, we finish proof of the first step after a basic calculation.

δ2Gδ(0, z) = eδ(z) − δ [a(z/δ) − C0]

=
(
2

κ
ψ(z) + O(δ)

)
−
(
2

κ

|z|
2

+ O
(
δ2/|z|)

)

= 2

κ
G�(0, z) + O(δ),

where three equalities are true if |z| > δ.
The second step, it suffices to prove for z = x + lnx ∈ �2,

eδ(z) − 2

κ
ψ(z) = 2

κ
K�(0, x)E0

[
|δRμ

Tl
− l|

]
+ O(δ2). (2.15)

where Tl := min
{
n ≥ 0 : δRμ

n /∈ (−∞, l)
}
. We write out the O

(
δ2/|z|) in (2.14). Then

eδ(z) − 2
κ
ψ(z) satisfies

{
�δ

[
eδ(z) − 2

κ
ψ(z)

] = 0, z ∈ �,

eδ(z) − 2
κ
ψ(z) = − 2

κ
G�(0, z) + O(δ2), z ∈ �3,

(2.16)

and recall the Corollary 2.6, and G�(0, z) can be extend to �3. Indeed, for l ∈ [0, δ]

G�(0, z − lnz) = −lK�(0, z) =
{

− b
b−a l, z = a;
a

b−a l, z = b.
(2.17)

Let Fδ(0, z) be the solution of the following discrete Dirichlet problem
{

�δFδ(0, z) = 0, z ∈ �;
Fδ(0, z) = lK�(0, x), z = x − lnx ∈ �3.

(2.18)
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Then (2.15) follows from (2.16), (2.17) and the following claim: for z = x + lnx ∈ �2

Fδ(0, z) = K�(0, z)E0
[
|δRμ

Tl
− l|

]
+ O(δ2). (2.19)

Observe that {Rμ
n }(n ≤ T�) is a martingale. According to the property of martingale, it is

easy to check that for z = x + lnx ∈ �2, the solution of (2.18) can be written as

Fδ(0, z) = E
z
[
K�

(
0, δRμ

T�

) ∣∣∣δRμ
T�

− δRμ
T�

∣∣∣
]
. (2.20)

Recall the �2 = (a, a + δ) ∪ (b − δ, b), we may assume z = b + lnb ∈ (b − δ, b), let

lzb := E
z
[
|b − δRμ

T�
|
∣∣∣δRμ

T�
= b

]
, lza := E

z
[
|a − δRμ

T�
|
∣∣∣δRμ

T�
= a

]
.

More specifically, lzb, l
z
a is the average distance of random walk δRμ

n started from z under
the condition of exiting from the boundary point b, a respectively. As a matter of fact,
0 < l, lza, l

z
b < δ, then (2.20) can be expressed as

Fδ(0, z) = b + |a| + lza − l

b + |a| + lzb + lza
lzbK�(0, b) + lzb + l

b + |a| + lzb + lza
lzaK�(0, a)

= (1 + O(δ))lzbK�(0, b) + O(δ)lzaK�(0, a)

= lzbK�(0, b) + O(δ2)

= K�(0, z)E0
[
|δRμ

Tl
− l|

]
+ O(δ2).

The last equality holds based on the fact that lzb = (1 + O(δ))E0
[
|δRμ

Tl
− l|

]
for small δ.

The claim (2.19) holds for the similar case z ∈ (a, a + δ), which completes the proof of
lemma. ��

Intuitively, Lemma 2.8 tells us the following fact: the estimation of discrete Green’s
functions near the boundary is related to the Dirichlet problem, and the solution to the
Dirichlet problem is related to the distribution of random walks leaving the boundary. This is
why the estimation of discrete Green’s functions near the boundary is related to the overshoot
of random walks.

2.3 Proof of Theorem 1.1

Let fδ and f be as in (2.5) and (2.2), respectively. By Lemma 2.3, we get that

fδ(0) − f (0) =
∑

z∈{a,b}
[ωδ(0, z;�) − ω(0, z;�)] g(z) =

∫

�2

Gδ(0, z)�δ f (z) dz

=
∫ δ

0
Gδ(0, a + lna)�δ f (a+lna) dl+

∫ δ

0
Gδ(0, b + lnb)�δ f (b + lnb) dl.

Combining with Lemma 2.7 and Lemma 2.8, a straightforward calculation gives that

fδ(0) − f (0) = cμδ
∑

z∈{a,b}

∂ f (z)

∂nz
K�(0, z) + O(δ2),

where

cμ = 2

κ

∫ 1

0

(
l + E

0[
∣∣∣Rμ

Tl
− l

∣∣∣]
)
hμ(l) dl,
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with hμ(l) := hμ(l, 1) given in Lemma 2.7. As the analogue argument as that of d ≥ 2-
dimensional case in [31, Lemma 2.12], one can derive that

∑
z∈{a,b}

∂ f (z)

∂nz
K�(0, z) =

∑
z∈{a,b}

g(z)ρ�(0, z), ρ�(0, z) =
{ −a−b

(b−a)2
, z = a,

a+b
(b−a)2

, z = b.

We might as well assume that g(x) in the above equation is:

g(x) =
{
1, x = a,

0, x = b.
or g(x) =

{
0, x = a,

1, x = b.

Combining the deductions mentioned above, a basic calculation shows

lim
δ→0

1

δ
[ωδ(0, z;�) − ω(0, z;�)] = cμρ�(0, z), z ∈ {a, b},

By comparing (1.8) with equation (1.7) in [31] term by term. Thus we are arrive at the
conclusion that cμ in (1.8) has same value as that of equation (1.7). So far we have completed
proving Theorem 1.1. ��

2.4 Correction Constants for Some Special RandomWalks

If Rn = ∑n
k=1 Xk, n ∈ N is a 1-dimensional random walk started at 0, where Xi are i.i.d

with common distribution F := F(t) = P(X1 ≤ t), t ∈ R. If for t ≥ 0 there exists almost
surely n ∈ N such that Rn > t , then we can define the quantity

�(t) := RTt − t, with Tt := min{n ≥ 1 : Rn > t}, t ≥ 0. (2.21)

In the context of random walks, �(t) is also known as overshoot or the excess over the
boundary. But in the theory of renewal processes, �(t) is frequently called the residual
lifetime or excess lifetime, and RTt is called the first ladder height. See the monographs of
Asmussen [1], Feller [12] and Gut [16] for a detailed description. There seem to be few
exact calculation for �(t) with fixed t > 0 in general random walk. But there is a relatively
well-studied theory for the special case t = 0 and t → ∞. The extensive reading is available
at e.g., [4, 8, 11, 28].

Similar to the definition of [1, Section VIII]. Let τ+ = T0 and τ− = inf{n ≥ 1 : Rn ≤ 0}
be the first ascending, descending ladder epoch respectively, G+ be the ascending ladder
height distributionG+(t) = P(Rτ+ ≤ t), andG− be the descending ladder height distribution
G−(t) = P(Rτ− ≤ t). In fact,G+,G− can be obtained by solvingWiener-Hopf factorization
identity (e.g. [1, Theorem 3.1]): F = G+ + G− − G+ ∗ G−, where ∗ denotes convolution.

By iterating the definition of τ+, τ−, we can define whole sequences {τ+(n)}, {τ−(n)} of
ladder epochs by τ+(1) = τ+, τ−(1) = τ−, and

τ+(n + 1) = inf{k > τ+(n) : Rk > Rτ+(n)}, n ∈ N;
τ−(n + 1) = inf{k > τ−(n) : Rk ≤ Rτ+(n)}, n ∈ N.

Then {Rτ+(n)}n≥1, {Rτ−(n)}n≥1 is called the ascending, descending ladder height process,
respectively.

We consider the counting process N defined by

N (t) :=
∞∑
n=1

1{Rτ+(n)≤t} = min{n : Rτ+(n) > t}, t ≥ 0,
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and let Gn(t) be the distribution function of Rτ+(n), n ≥ 1. Thus,

G1(t) = G+(t), Gn(t) = Gn∗+ (t), n ∈ N.

Gn∗+ is the n-fold convolution of G+ itself. The associated renewal function can be written
as

U+(t) := E(N (t)) =
∞∑
n=1

Gn(t). (2.22)

The well-known fact that (e.g. [16, Theorem 5.3]),

E(Rτ+(N (t))) = E(Rτ+)E(N (t)) = E(Rτ+)U+(t). (2.23)

The following lemma gives an asymptotic estimate of U+(t) as t → ∞.

Lemma 2.9 (Stone [30, Theorem]) If Rτ+ has finite first moment E(Rτ+) and finite second
moment E(R2

τ+), if for some r1 ≥ 1, 1 − F(t) = o(e−r1t ) as t → ∞, and if F is strongly
non-lattice, then for some r > 0,

U+(t) = t

E(Rτ+)
+ E(R2

τ+)

2(E(Rτ+))2
+ o(e−r t ), as t → ∞.

For further estimation of U+(t) refer to e.g. [5, 6, 9]. The following Corollary 2.10 is an
immediate result from (2.22), (2.23) and Lemma 2.9.

Corollary 2.10 If X1 is a symmetrical random variable and F(t) is strongly nonlattice, if for
some r1 ≥ 1, 1 − F(t) = o(e−r1t ) as t → ∞, then for some r > 0

E [�(t)] =
E

[
R2
T0

]

2E
[
RT0

] + o(e−r t ), t → ∞.

The following Lemma 2.11 is a simple variation of Lai [25, Theorem 3].

Lemma 2.11 (Lai [25, Theorem 3]) Suppose X1, X2, · · · is a sequence of i.i.d. R-valued
random variables such that F is nonlattice, and E[X1] = 0, E

[
X2
1

] = κ ∈ (0,∞). Let

Rn = X1 + · · · + Xn, n ∈ N. (2.24)

Then for all x > 0,

lim
t→∞ P[�(t) ≤ x] = 1

E
[
RT0

]
∫ x

0
P
[
RT0 > t

]
dt, (2.25)

where E
[
RT0

] = 1√
2
exp

( ∞∑
n=1

1
n

[
P(Rn ≤ 0) − 1

2

])
. Moreover,

c∗ := lim
t→+∞ E [�(t)] =

E

[
R2
T0

]

2E
[
RT0

] .

Due to the complexity of calculations for both E
[
RT0

]
and E

[
R2
T0

]
, Siegmund [29] derived

an easier method to calculate for the c∗ when κ = 1, as follows.

c∗ = − 1

π

∫ ∞

0
t−2� log

{
2[1 − φ(t)]/t2} dt, (2.26)
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where φ(t) = E[e
√−1t X1 ]. �z is the real part of the complex number z.

Analogue to the property of stationary occupation measure for renewal process (e.g. [20,
Proposition 9.19]). Under the assumptions of Lemmas 2.11, 2.11 implies that the distribution
of �(t) is absolutely continuous with respective to Lebesgue measure. Fixing t > 0, and
putting

T̃t := min{n ≥ 1 : Rn ≥ t}.
We note in particular that RT̃t − t has the same distribution as that of �(t) as t → ∞. Hence
Corollary 2.10 also holds by replacing Tt in (2.21) with T̃t , which will be used in proving
Theorem 1.2.

For general case κ ∈ (0,∞), by suitable modification to the proof of (2.26), we can show
the following corollary.

Corollary 2.12 Under the assumptions stated in Lemma 2.11, we further assume that X1 is
a symmetric random variable with E

[
X2
1

] = 1. Given a fixed value of κ ∈ (0,∞), if we
substitute Xi with

√
κXi in equation (2.24), we can derive the following result:

c∗ = − 1

π

∫ ∞

0
t−2 log

(
2(1 − φ̃(t))

κt2

)
dt,

where φ̃(t) = E

[
e
√−1t

√
κX1

]
.

Proof Let φ(t) = E[e
√−1t X1)], recall of equation (2.26) and the fact φ̃(t) = φ(

√
κt), we

obtain

c∗ = √
κ

[
− 1

π

∫ ∞

0
t−2� log

{
2[1 − φ(t)]/t2} dt

]

= − 1

π

∫ ∞

0
t−2 log

(
2(1 − φ(

√
κt))

κt2

)
dt

= − 1

π

∫ ∞

0
t−2 log

(
2(1 − φ̃(t))

κt2

)
dt .

The last second equality holds due to the symmetry of X1 and integral transformation. The
proof is completed. ��

The correction constants c∗ for two types of random walks (i.e., with uniform step dis-
tribution on ∂B

d or B
d ) are of interest to us. According to Theorem 1.1 and Proposition

2.15 below, the random walk Sμ with a uniform step distribution on ∂B
d+2 has the same

correction constant c∗ as that of Sμ with a uniform step distribution on B
d , d ∈ N.

The following Lemmas 2.13, 2.14 and Proposition 2.15 are to illustrate the close relation
between the uniform random variable on the B

d and the uniform random variable on the
∂B

d+2.

Lemma 2.13 If X = (
X (1), · · · , X (d)

)
, d ≥ 2, is a uniform random variable on ∂B

d , Then
the probability density f (d, x) of X (1) satisfies

f (d, x) =
⎧⎨
⎩

�(d/2)√
π�

(
d−1
2

) (1 − x2
) d−3

2 , x ∈ (−1, 1);
0, x ∈ R\(−1, 1).
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Proof Set Ax,x+�x ={
w = �(ϕ1, · · · , ϕd−1, 1)∈∂B

d , ϕ1 ∈ (arccos(x), arccos(x + �x))
}
.

And let
Area(Ax,x+�x ) be the area of Ax,x+�x , then a basic computation gives

Area(Ax,x+�x ) =
∫ 2π

0

∫ π

0
· · ·

∫ arccos(x+�x)

arccos(x)
Jd(1) dϕ1 · · · dϕd−2.

Let ωd be the area of ∂B
d , i.e. ωd = 2πd/2

�(d/2) . Therefore, for x ∈ (−1, 1)

f (d, x) = lim
�x→0

1

ωd

Area(Ax,x+�x )

�x

= lim
�x→0

1

ωd

1

�x

∫ arccos(x+�x)

arccos(x)

2π(d−1)/2

�
( d−1

2

) sind−2(ϕ1) dϕ1

= �(d/2)√
π�

( d−1
2

) (1 − x2
) d−3

2 .

The rest of the proof is obvious. ��
Lemma 2.14 If X = (

X (1), · · · , X (d)
)
, d ≥ 1 is the uniform random variable on B

d , Then
the probability density f (d, x) of X (1) does exist and it satisfies

f (d, x) =
⎧⎨
⎩

�(d/2+1)√
π�

(
d−1
2 +1

) (1 − x2
) d−1

2 , x ∈ (−1, 1);
0, x ∈ R\(−1, 1).

Proof The proof of lemma is similar to that of Lemma 2.13. ��
Proposition 2.15 If X̃ = (

X̃ (1), · · · , X̃ (d)
)
is the uniform random variable on theB

d , d ∈ N,
and X̂ = (

X̂ (1), · · · , X̂ (d+2)
)
is the uniform random variable on the ∂B

d+2. Then for d ∈ N,
we have

X̃ (1) law= X̂ (1).

Proof The proposition follows from Lemmas 2.13 and 2.14. ��
A fascinating example for the random walk with bilateral exponential step distribution.

Its fascinating aspect lies in the fact that for any positive value of δ, the harmonic measure
of this example can be computed exactly, without the need to consider δ approaching 0. See
the Proposition 2.16, which provides a detailed explanation of Remark 1.3(iii).

Proposition 2.16 For λ ∈ (0,∞), and let random walk {Rn}n≥1 be the bilateral exponential

step distribution on R with density 1
2λ exp

(
−|x |

λ

)
, x ∈ R. Then for any δ ∈ (0,∞), c∗ = λ

and

ωδ(0, z;�) = |a| + b − |z| + λδ

|a| + b + 2λδ
, z ∈ {a, b}.

Proof The proposition follows from the lack of memory of the exponential distribution. We
may find the argument similar to that of Chapter I in [12]. i.e. the point of the random walk
δRn first entry into R\� is independent of the epoch of this entry and its overshoot distance∣∣δRT� − δRT�

∣∣ at both a and b have same density 1
λδ

exp
(− x

λδ

)
, which implies that

E

[∣∣δRT� − a
∣∣ ∣∣∣δRT� = a

]
= E

[∣∣δRT� − b
∣∣ ∣∣∣δRT� = b

]
=
∫ ∞

0

x

λδ
exp

(
− x

λδ

)
dx = λδ.
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Table 1 theoretical values for cμ

d-dimension Step distribution μ of {Sμ
n }n≥1 cμ

d = 1 The uniform distribution on (−1, 1) 0.297952276140383

d = 2 The uniform distribution on ∂B
2 0.349376861547993

d = 2 The uniform distribution on B
2 0.264766405680596

d = 3 The uniform distribution on ∂B
3 0.297952276140383

d = 3 The uniform distribution on B
3 0.240823087230242

d = 4 The uniform distribution on ∂B
4 0.264766405680596

d = 4 The uniform distribution on B
4 0.222445055985682

∀d ≥ 1 d-dimensional standard normal distribution 0.582597157939010

Due to the fact that E(δRT�) = 0 and ωδ(0, a,�) + ωδ(0, b,�) = 1, a basic calculation
yields

0 = E(δRT�) = ωδ(0, a,�) × (a − λδ) + ωδ(0, b,�) × (b + λδ).

The rest of the proof is trivial. ��
Next, we will provide several correction constants for some random walks. Combining

the Corollary 2.12, Proposition 2.15 and the (i) of Remark 1.3, its not difficult to deduce the
following decimal approximation results ( up to 15 digits ), as shown in Table 1. In following
table, Sμ

n is transformed into Rμ
n when d = 1.

2.5 Proof of Theorem 1.2

The proof of Theorem 1.2 (i) is similar to that of Theorem 1.2 (ii), and is much simpler than
the latter. So we only verify Theorem 1.2 (ii). To begin, recall Lemma 2.11. Let �(l) =
(−∞, l), l > 0,

T�(l) =min{n : Rn /∈ �(l)}, l > 0, Ta(δ)=min{n : δRn ≤ a}, Tb(δ)=min{n : δRn ≥ b}.
Then Ta(δ) and Tb(δ) are finite almost surely, and T� = Ta(δ) ∧ Tb(δ).

We divide our proof in two steps. Firstly, let ξ be a nonnegative random variable whose
law is given by the right hand side of (2.25), we need to verify the following properties: As
δ → 0,

P

[
1

δ

∣∣δRTb(δ) − b
∣∣ ≤ x

∣∣∣∣ Ta(δ) < Tb(δ)
]

→ P[ξ ≤ x], x ≥ 0; (2.27)

P

[
1

δ

∣∣δRTa(δ)
− a

∣∣ ≤ x

∣∣∣∣ Tb(δ) < Ta(δ)
]

→ P[ξ ≤ x], x ≥ 0. (2.28)

Let
{
δ R̂n

}
n≥0 be another independent random walk starting from 0 which has the same

law as {δRn}n≥0. Notice that

{Ta(δ) < Tb(δ)} = {max {δRn : n ≤ Ta(δ)} < b} .

Hence, by the strong Markov property, given Ta(δ) < Tb(δ),{
Rn+Ta(δ) − RTa(δ)

}
n≥0 is independent of RTa(δ) and has the same law as

{
R̂n
}
n≥0 .

(2.29)
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Since for any δ > 0, given Ta(δ) < Tb(δ),
1

δ

∣∣δRT�(b/δ) − b
∣∣ = 1

δ

∣∣(δRT�(b/δ) − δRTa(δ)

)− (
b − δRTa(δ)

)∣∣
= ∣∣(RT�(b/δ) − RTa(δ)

)− (
b/δ − RTa(δ)

)∣∣
law=

∣∣∣∣R̂T
�(b/δ−RTa (δ))

− (
b/δ − RTa(δ)

)∣∣∣∣ ,
{
R̂n
}
n≥0 is independent of RTa(δ) and b/δ − RTa(δ),

and b/δ − RTa(δ) ≥ b/δ → ∞ (δ → 0); by Lemma 2.11 and Corollary 2.12, we have that
as δ → 0,

P

[∣∣∣∣R̂T
�(b/δ−RTa (δ))

− (
b/δ − RTa(δ)

)∣∣∣∣ ≤ x

∣∣∣∣ Ta(δ) < Tb(δ)
]

→ P[ξ ≤ x], x ≥ 0.

Hence,

P

[
1

δ

∣∣δRT�(b/δ) − b
∣∣ ≤ x

∣∣∣∣ Ta(δ) < Tb(δ)
]

→ P[ξ ≤ x], x ≥ 0.

Namely (2.27) is true. Similarly, (2.28) holds. Write A(δ) := {Ta(δ) < Tb(δ)} and B(δ) :=
{Tb(δ) < Ta(δ)}, and

pa(δ) := P(A(δ)), pb(δ) := P(B(δ)).

Then

pa(δ) → b

b + |a| , pb(δ) → |a|
b + |a| , δ → 0. (2.30)

Note that by Lemma 2.11, as δ → 0,

P

[
1

δ

∣∣δRT�(b/δ) − b
∣∣ ≤ x

]
→ P[ξ ≤ x], x ≥ 0. (2.31)

Since for any x ≥ 0,

P

[
1

δ

∣∣δRT�(b/δ) − b
∣∣ ≤ x

]

= P

[
1

δ

∣∣δRT�(b/δ) − b
∣∣ ≤ x

∣∣∣∣ A(δ)

]
pa(δ) + P

[
1

δ

∣∣δRT�(b/δ) − b
∣∣ ≤ x

∣∣∣∣ B(δ)

]
pb(δ),

by (2.27), (2.30) and (2.31), as δ → 0,

P

[
1

δ

∣∣δRTb(δ) − b
∣∣ ≤ x

∣∣∣∣ B(δ)

]
= P

[
1

δ

∣∣δRT�(b/δ) − b
∣∣ ≤ x

∣∣∣∣ B(δ)

]
→ P[ξ ≤ x].

(2.32)

Similarly, as δ → 0,

P

[
1

δ

∣∣δRTa(δ) − a
∣∣ ≤ x

∣∣∣∣ A(δ)

]
→ P[ξ ≤ x], x ≥ 0. (2.33)

Let

c∗ = E[ξ ] = lim
l→∞ E

[
RT�(l) − l

] =
E

[
R2
T0

]

2E
[
RT0

] .
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Combining (2.32), (2.33) as well as Corollary 2.10, for some r1, r2 > 0, we get

E

[∣∣δRTa(δ) − a
∣∣ ∣∣∣A(δ)

]
= c∗δ + o(e− r1

δ ), δ → 0; (2.34)

E

[∣∣δRTb(δ) − b
∣∣
∣∣∣B(δ)

]
= c∗δ + o(e− r2

δ ), δ → 0. (2.35)

We proceed to the final step of the proof. Since {δRn}n≤T�
is a martingale, we have

E[δRT� ] = E[δR0] = 0.

Note that

RT� = (
δRTa(δ) − a + a

)
/δ IA(δ) + (

δRTb(δ) − b + b
)
/δ IB(δ)

=
(

−1

δ

∣∣δRTa(δ) − a
∣∣+ a/δ

)
IA(δ) +

(
1

δ

∣∣δRTb(δ) − b
∣∣+ b/δ

)
IB(δ).

By (2.34) and (2.35), let r = min{r1, r2}, we obtain
0 = E[δRT� ] = P (A(δ)) × (a − c∗δ + o(e− r

δ )) + P (B(δ)) × (b + c∗δ + o(e− r
δ )),

Since P [A(δ)] + P [B(δ)] = 1, we obtain

P [A(δ)] = P
(
δRT� = a

) = b + c∗δ + o(e− r
δ )

b − a + 2c∗δ + o(e− r
δ )

, (2.36)

P [B(δ)] = P
(
δRT� = b

) = −a + c∗δ + o(e− r
δ )

b − a + 2c∗δ + o(e− r
δ )

. (2.37)

Recall that ωδ(0, z,�) = P
(
δRT� = z

)
, z ∈ {a, b} is the discrete harmonic measure of

{δRn}n≥0, and ω(0, z,�) := P (B(τ�) = z) is the harmonic measure for 1-dimensional
Brownian motion, and

P (B(τ�) = z) =
{

b
b−a , z = a,
−a
b−a , z = b.

(2.38)

Expanding ωδ(0, z,�) − ω(0, z,�) into a power series at δ = 0. Therefore, for any n ∈ N,

lim
δ→0

1

δn

(
ωδ(0, z,�) − ω(0, z,�) −

n−1∑
k=1

ck∗ρ
(k)
� (0, z)δk

)
= cn∗ρ

(n)
� (0, z), z ∈ {a, b},

where

ρ
(n)
� (0, z) =

{
(−2)n−1 −a−b

(b−a)n+1 , z = a,

(−2)n−1 a+b
(b−a)n+1 , z = b.

The proof is completed. ��

3 High-Order Correction

In this section, we propose two high-order conjectures about the correction of discrete har-
monic measures: the conjecture for rotationally invariant case and a more general case. A
more general case means that there is no requirement for the step distribution of the random
walk to be rotationally invariant, or for the step distribution of the random walk to be i.i.d.,
or even for the random walk to converge to Brownian motion.
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3.1 High-Order Correction for Rotationally Invariant Case

In this subsection, we will propose a conjecture regarding the high-order correction of the
harmonic function for the rotationally invariant random walk in R

d , d ≥ 2, and provide a
non-rigorous proof for such conjecture.

For l ∈ (0,∞) and small δ, define

Dlδ =
{
z ∈ R

d : dist(z, D) < lδ
}

. (3.1)

If l = 1, write Dδ := Dlδ . Denote by ω(0, dζ ; Dδ) the harmonic measure for the d-
dimensional standard Brownian motion exiting from Dδ . To facilitate a better understanding
of the conjecture that we are about to present, it is necessary to introduce the following
proposition.

Proposition 3.1 Let g(z) be any bounded smooth function on z ∈ ∂D. For dζ ⊂ ∂Dδ, dz ⊂
∂D with ζ = z − δnz . For small enough δ > 0, we can write

ω(0, dζ ; Dδ) − ω(0, dz; D) =
∞∑
n=1

δnρ
(n)
D (0, z)|dz|, (3.2)

where
{
ρ

(i)
D (0, z), i = 1, 2 · · ·

}
is a class of measurable functions on ∂D. Then the following

equations hold:
∫

∂D
g(z)ρ(i)

D (0, z) |dz| =
∫

∂D
ĝ(i)(z)ω(0, dz; D), i = 1, 2, · · · (3.3)

where ĝ(i)(z) satisfy the following Taylor series at δ = 0, i.e.
∫

∂Dδ

g(ζ + δnz)ω(z, dζ ; Dδ) − g(z) =
∞∑
i=1

ĝ(i)(z)δi .

In particular,

ĝ(1)(z) = ∂ f (z)

∂nz
, ρD(0, z) := ρ

(1)
D (0, z) = ∂h(z)

∂nz
, (3.4)

here f (z) is a harmonic function in D with boundary value given by g(z), z ∈ ∂D andh(z) is a
harmonic function in D with boundary values given by the Poisson kernelKD(0, z), z ∈ ∂D.

Moreover, ∫

∂D
ρ

(i)
D (0, z) |dz| = 0, i = 1, 2 · · · .

Proof Let f be the solution of the continuous Dirichlet problem
{

� f (z) = 0, z ∈ D,

f (z) = g(z), z ∈ ∂D.

and we define another solution to the Laplace equation in Dδ . Let f̂ solve{
� f̂ (ζ ) = 0, ζ ∈ Dδ,

f̂ (ζ ) = g(z), ζ = z − δnz ∈ ∂Dδ, z ∈ ∂D.
(3.5)

The equation (3.5) implies that f̂ also solves
{

� f̂ (z) = 0, z ∈ D,

f̂ (z) = ĝ(z), z ∈ ∂D.
(3.6)

123



The High-Order Corrections of Discrete Harmonic Measures... Page 23 of 35    81 

with

ĝ(z) =
∫

∂Dδ

g(ζ + δnz)ω(z, dζ ; Dδ), z ∈ ∂D, ζ = z − δnz ∈ ∂Dδ.

Hence, we have

f̂ (0) − f (0) = ∫
∂Dδ

g(ζ + δnz) ω(0, dζ ; Dδ) − ∫
∂D g(z) ω(0, dz; D)

= ∫
∂D ĝ(z) ω(0, dz; D) − ∫

∂D g(z) ω(0, dz; D)

= ∫
∂D (ĝ(z) − g(z)) ω(0, dz; D)

= ∫
∂D δi

∞∑
i=1

ĝ(i)(z)ω(0, dz; D).

(3.7)

The second equality above holds because the solutions for f̂ (z) in equation (3.5) and (3.6)
are the same for z ∈ D. The equation (3.7) has another equivalent expression by changing
the integral interval. That is

f̂ (0) − f (0) = ∫
∂Dδ

g(ζ + δnz) ω(0, dζ ; Dδ) − ∫
∂D g(z) ω(0, dz; D)

= ∫
∂D g(z)

[
ω (0, d(z − δnz); Dδ) − ω(0, dz; D)

]

= ∫
∂D g(z)

∞∑
n=1

δnρ
(n)
D (0, z)|dz|.

(3.8)

By comparing the both sides of the equality in (3.7) and (3.8) term by term, we see that the
equation (3.3) holds.

Recall that f (z) = g(z), z ∈ ∂D and f̂ (z) = ĝ(z) closely related to g(z), ζ = z−δnz, z ∈
∂D. Hence, the Taylor series of ĝ(z) − g(z) satisfies

ĝ(z) − g(z) = ∂ f (z)

∂nz
δ + O(δ2), z ∈ ∂D.

Therefore, the following equation holds.
∫

∂D
g(z)ρ(1)

D (0, z) |dz| =
∫

∂D

∂ f (z)

∂nz
ω(0, dz; D).

Defined ρD(0, z) := ρ
(1)
D (0, z) = ∂h(z)

∂nz
. The proof of Lemma 2.12 in [31] implies that

ρD(0, z) = ∂h(z)

∂nz
.

The equations
∫
∂D ρ

(i)
D (0, z) |dz| = 0, i = 1, 2 · · · follows only by setting g(z) ≡ c for a

certain constant c = 0. So far, the proof is completed. ��
By the Proposition 3.1, one can accurately calculate the universal measurable function

ρ
(n)
D (0, z) of higher-order and obtain some properties of ρ(n)

D (0, z). These results will be used
for the higher-order estimates of the discrete measure in Conjecture 3.2 and 3.3.

Based on deep insight and thinking of correction to the one-dimensional discrete harmonic
measure in Theorem 1.2 and Proposition 3.1. We have following conjecture.

Conjecture 3.2 Assume that D ⊂ R
d(d ≥ 2) is an open simply-connected bounded domain

with 0 ∈ D and ∂D is smooth. And μ is a rotationally invariant probability on B
d and

μ({0}) < 1. Then we conjecture following holds for any finite n ∈ N.

lim
δ→0

1

δn

(
ωδ(0, dz; D) − ω(0, dz; D) −

n−1∑
k=1

(cμδ)kρ
(k)
D (0, z)|dz|

)
= cnμρ

(n)
D (0, z)|dz|,
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where cμ, ρ
(n)
D are specified in (1.10) and (3.2) respectively.

The heuristic derivation of Conjecture 3.2. On the one hand, by Theorem 1.1 and Theorem
1.2, it is not difficult to verify that for∀z ∈ ∂D, the average distance of randomwalk

{
δSμ

n
}
n≥0

under the condition of exiting from z is cμδ + o(e−r/δ) for some r > 0 depending on z as
δ → 0, especially,

cμ = lim
δ→0

1

δ
E

[∣∣∣δSμ
TD

− z
∣∣∣
∣∣∣∣δSμ

TD
= z

]
, a.s.

On the other hand, with dζ = d(z − δnz), the Proposition 3.1 implies that

ω
(
0, dζ ; Dcμδ

)− ω(0, dz; D) =
∞∑
n=1

(cμδ)nρ
(n)
D (0, z)|dz|.

Combined with the known conclusions: the first-order correction function ofω
(
0, dζ ; Dcμδ

)

is the same as that of ωδ(0, dz, D), (see to (1.7), note: ρD(0, z) = ρ
(1)
D (0, z), z ∈ ∂D).

From the above reasons, we expect that the Conjecture 3.2 holds.
Notice the fact that the Conjecture 3.2 holds for n = 1 (refer to [31, Theorem 1.2]) and

is a natural generalization of 1-dimension case (see Theorem 1.2(ii)). The Theorem 1.2(ii)
and Conjecture 3.2 imply that one approximate the discrete harmonic measure by computing
their analogues for a Brownian motion process with stoping boundaries at a − c∗δ, b + c∗δ
and ∂Dcμδ respectively.

3.2 High-Order Correction for a More General Case

In this subsection, we generalize the Conjecture 3.2.
Reviewing the random walks studied in this paper, it can be found that their scaling limits

are Brownian motions. Therefore, not surprisingly, their scaling limits of discrete harmonic
measure converge to the continuous counterparts. However, on the one hand, there are lots
of random walks whose scaling limits are Brownian motions, but their step distribution
are not necessarily i.i.d. (e.g. the SRW on hexagonal planar lattices). On the other hand,
there are still many random walks whose scaling limits are not Brownian motions, but their
discrete harmonic measures converge to the continuous counterparts, these random walks
have similar first-order harmonic measure error correction. For example, RWNB, SKW on
square, triangular and hexagonal planar lattices and so on. The reader is referred to [10, 22,
23] and the references therein for further details.

Naturally, we present a more general conjecture on high-order approximation of the har-
monic measure error. The conjecture is generalized from two aspects: (i)We consider more
general random walks in d dimensions d ≥ 2, whereas in [23], only 2D random walks (i.e.
SRW, RWNB and SKW on square, triangular and hexagonal planar lattices). (ii)We consider
n-th order correction (n ≥ 1) in the discrete harmonic measure error correction, whereas in
[23], only first-order correction was considered.

When the random walk is not rotationally invariant. Define the general random walk
Sn = ∑n

i=1 Xi , here the support of the Xi is on theR
d with finite secondmoment. The Xi here

does not have to be independent and identically distributed. Let ω̂δ(0, dz; D), ω̂δ,α(0, dz; D)

be the discrete harmonic measure of random walk {δSn}n≥1 and {δSn,α}n≥1, respectively.
Here δSn,α is the image of δSn under rotation α ∈ SO(d), the special orthogonal rotation
group of d × d orthogonal matrices with determinant 1.
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Thus it is natural to redefine the discrete harmonic measure ωδ(0, ·; D) by averaging over
the orientation: i.e.,

ωδ(0, dz; D) =
∫

SO(d)

ω̂δ,α(0, dz; D) dm̃(α),

where m̃ is the normalized Haar measure on SO(d), and ω̂δ,α(0, dz; D) is the image of
ω̂δ(0, dz; D) under rotation α ∈ SO(d). Because of this averaging over the orientation of the
lattice, ωδ(0, dz; D) is a continuous measure on ∂D. More detailed descriptions with respect
to averaging over the orientation can be found in [23, 31].

Based on such definition by averaging over the orientation, we have the following more
general conjecture.

Conjecture 3.3 Assume that D ⊂ R
d (d ≥ 2) is an open simply-connected bounded domain

with 0 ∈ D and ∂D is smooth. For any random walk {δSn}n≥1 starting from 0 whose discrete
harmonicmeasure convergeweakly to the continuous counterpart, and if there exist a positive,
finite, absolute constant c∗ ∈ (0,∞) depending only on the random walk such that for any
z ∈ ∂D with respect to Lebesgue measure, by averaging over the orientation, as δ → 0,
∫

SO(d)

E

[∣∣δSTD ,α − z
∣∣
∣∣∣∣δSTD ,α = z

]
dm̃(α) = c∗δ + o(e− r

δ ), a.s. for some r > 0;

then for any n ∈ N,

lim
δ→0

1

δn

(
ωδ(0, dz; D) − ω(0, dz; D) −

n−1∑
k=1

(c∗δ)kρ(k)
D (0, z)|dz|

)
= cn∗ρ

(n)
D (0, z)|dz|,

where ωδ(0, ·; D) is the discrete harmonic measure by averaging over the orientation, ρ(n)
D

are defined in (3.2).

Observe that, if Conjecture 3.3 holds, c∗ is also given by

c∗ = lim
l→+∞

∫

SO(d)

E
�
[∣∣∣ST

Hd ,α − ST
Hd ,α

∣∣∣
]
dm̃(α), � = (0, · · · , 0, l) ∈ R

d . (3.9)

The interest of this conjecture lies in that it can provide more accurate estimations in the
study of a large of discrete harmonic measures and discrete Green’s functions.

In the following, we will provide the correction constants of SRW on some classical
lattices by averaging over the orientation. Let us illustrate it with several examples.

Example 3.4 Correction constant c∗ of SRW on triangular planar lattice.

Considering the SRW S = {Sn}n≥1 on triangular planar lattice. More clearly, S with i.i.d
random variable Xi ∈ R

2 such that

P(Xi = (cos(α), sin(α))) = 1

6
, α = kπ

3
, k = 0, ..., 5.

In fact, according to (3.9), c∗ is given exactly by

c∗ = 1

2π

∫ 2π

0
�(θ)dθ, �(θ) := lim

l→+∞ E
0 [RTl ,θ

]
, (3.10)

where Rn,θ a.s. the nonlattice random walk on R with step distribution Xi,θ satisfy

P(Xi,θ = ± cos(θ + kπ

3
)) = 1

6
, k = 0, 1, 2, θ ∈ [0, 2π], i = 1, 2, . . . ,
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Table 2 theoretical values c∗ for different random walk in Conjecture 3.3

d-dimension Random walk {Sn}n≥1 c∗

d = 2 SRW on triangular planar lattice 0.360153428425501

d = 2 SRW on Z
2 0.366026584297563

d = 3 SRW on Z
3 0.307282689984202

d = 4 SRW on Z
4 0.271695482505523

and Tl = min{n ≥ 1 : Rn,θ ≥ l}. �(θ) indeed a.s. exist with respect to the Lebesgue measure

for θ ∈ [0, 2π]. Define �(t, θ) = E[e
√−1t X1,θ ]. Combining with the Corollary 2.12, (3.10)

can be writhen as

c∗ = −1

2π2

∫ 2π

0

∫ ∞

0

1

t2
log

(
4(1 − �(t, θ)))

t2

)
dtdθ.

Example 3.5 Correction constant c∗ of SRW on Z
d , d ≥ 2.

Considering the SRW S = {Sn}n≥1 on Z
d(d ≥ 2). More specifically, S with i.i.d random

variable Xi ∈ R
d such that P(Xi = ±ei ) = 1

2d , where ei is the unit vector of the i-axis. In
fact, according to (3.9) and d-dimensional spherical polar coordinates transform (2.9), c∗ is
given exactly by

c∗ = 1

ωd

∫ 2π

0

∫ π

0
· · ·

∫ π

0
�(ϕ1, · · · , ϕd−1)Jd(1) dϕ1, · · · , dϕd−1, (3.11)

where ωd is the area of ∂B
d and �(ϕ1, · · · , ϕd−1) := �(θ) = lim

l→+∞ E
0
[
RTl ,θ

]
. In fact, here

Rn,θ is a.s. the nonlattice random walk on R with step distribution Xi,θ such that

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P(Xi,θ = ± sin(ϕ1) · · · sin(ϕd−2) sin(ϕd−1)) = 1
2d ,

P(Xi,θ = ± sin(ϕ1) · · · sin(ϕd−2) cos(ϕd−1)) = 1
2d ,

...

P(Xi,θ = ± sin(ϕ1) cos(ϕ2)) = 1
2d ,

P(Xi,θ = ± cos(ϕ1)) = 1
2d .

Define �(t, θ) = E[e
√−1t X1,θ ]. Combine with the Corollary 2.12, we get

c∗ = −�(d/2)

2πd/2+1

∫ 2π

0

∫ π

0
· · ·

∫ π

0

∫ ∞

0

1

t2
log

(
2d(1 − �(t, θ)))

t2

)
Jd(1) dtdϕ1, · · · , dϕd−1,

Hence, it is readily to deduce the following decimal approximation results, see Table 2.

4 The Simulation for First and Second-Order Correction

We give several numerical simulation examples of first or second-order correction for the
Conjecture 3.2 and 3.3. We use three examples in R

2 and R
3 to numerically simulate the first

and second-order correction by the Monte Carlo method.
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For w = (x1, x2, · · · , xd) ∈ ∂B
d
R , we replace it with d-dimensional spherical polar

coordinates transform in (2.9), it is well known that

K
B
d
R
(z, w) = R2 − |z|2

ωd R
(
R2 + |z|2 − 2R|z| cos(ϕ1)

)d/2 , (4.1)

when z ∈ {0}d−1 × (0, R).
For more details of Poisson kernel for B

d
R refer to [2, 15].

Proposition 4.1 Set D = B
d
R, z = (0, · · · , 0, r), r ∈ [0, R) and let w ∈ ∂B

d
R and ζ =

w − δnw . Define

H(r , ϕ1, R, δ) :=
(
(R + δ)2 − r2

)
(R + δ)d−2

ωd
(
(R + δ)2 + r2 − 2(R + δ)r cos(ϕ1)

)d/2 ,

and set

H (n)
δ (r , ϕ1, R, δ) := ∂nH(r , ϕ1, R, δ)

∂δn
.

Then as δ → 0, we have

ω(z, dζ ; Dδ) − ω(z, dw; D) =
∞∑
n=1

δn

n! H
(n)
δ (r , ϕ1, R, 0) |dw|, ζ ∈ ∂B

d
R+δ.

Proof According to d-dimensional spherical polar coordinates transform in (2.9), then |dζ |,
|dw| can be written as

|dζ | = (R + δ)d−1dϕ1 · · · dϕd−1, |dw| = Rd−1dϕ1 · · · dϕd−1.

and the Poisson kernel in (4.1), with the ζ = w − δnw ∈ ∂B
d
R+δ , then we get

ω(z, dζ ; Dδ) − ω(z, dw; D) = K
B
d
R+δ

(z, ζ ) |dζ | − K
B
d
R

(z, w) |dw|
= (H(r , ϕ1, R, δ) − H(r , ϕ1, R, 0)) dϕ1 · · · dϕd−1

=
∞∑
n=1

δn

n! H
(n)
δ (r , ϕ1, R, 0) dϕ1 · · · dϕd−1.

The proof is now complete. ��

If we set

ρ
(n)

B
d
R
(z, w) := 1

n!H
(n)
δ (r , ϕ1, R, 0), w ∈ ∂B

d
R .

Considering the need for the simulation of first and second-order corrections later on,
we need to calculate ρ

B
d
R
(z, w) := ρ

(1)
B
d
R
(z, w) and ρ

(2)
B
d
R
(z, w). A basic calculation yields the

following result.

ρ
(1)
B
d
R
(z, w) = �(d/2)r

(
r3(2 − d) + r2(d − 4)R cosϕ1 + (2 + d)r R2 − dR3 cosϕ1

)

2πd/2R2
(
r2 − 2r R cosϕ1 + R2

)d/2+1 .

(4.2)
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ρ
(2)
B
d
R
(z, w) = − 1

2ωd(R2−2 cos(ϕ1)Rr+r2)
d/2+2

[
Rd−4r(6R4r − 5dr5

+6r5 + 12R2r3 + d2r5 + 24R2r3 cos2(ϕ1) − 2R5d cos(ϕ1)

−6R2dr3 − 24Rr4 cos(ϕ1) − R2d2r3 − 24R3r2 cos(ϕ1)

+3R4dr + 2R3dr2 cos(ϕ1) − 2Rd2r4 cos(ϕ1)

+2R4dr cos2(ϕ1) − 10R2dr3 cos2(ϕ1) + 2R3d2r2 cos(ϕ1)

−R4d2r cos2(ϕ1) + 16Rdr4 cos(ϕ1) + R2d2r3 cos2(ϕ1)
]
.

(4.3)

In the following three examples, we redefine
{
S

μ j
n

}
n≥0

with μ j instead of μ which is

similar to the definition of
{
Sμ
n
}
n≥0 in (1.1).

Example 4.2 Consider random walks
{
δS

μ j
n

}
n≥0

( j = 1, 2, 3) starting at 0 = (0, 0) with μ1

the uniform distribution on B
2, μ2 the uniform distribution on ∂B

2, μ3 the 2-dimensional
standard normal distribution, respectively. Let

z0 =
(
0,

1

3

)
, D = {

ζ ∈ R
2 : |ζ + z0| < 1

}
.

WriteKD(0, ζ ) andKB2(z0, z) for the Poisson kernels of D and B
2 respectively. Translation

invariance implies

KD(0, z − z0) = KB2(z0, z), z ∈ ∂B
2.

Introduce 2-dimensional spherical polar coordinates transform:

z = (r sin(φ), r cos(φ)) , φ ∈ [0, 2π].

From (4.1), we have KD(0, z − z0) = 2
π(5−3 cos(φ))

. By the equations (4.2), (4.3) and trans-
lation invariance, we can derive that
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ρ
(1)
D (0, z − z0) = 3(3 − 5 cos(φ)

2π(5 − 3 cos(φ))2
, z ∈ ∂B

2.

and

ρ
(2)
D (0, z − z0) = 9(cos(2φ) − 36 cos(φ) + 27)

8π(3 cos(φ) − 5)3
, z ∈ ∂B

2.

Without considering the constant product factor, we write F (i)
D (ϑ), i = 1, 2 as the first and

second-order correction for difference of the cumulative distribution function(CDF) between
discrete harmonic measure and continuous harmonic measure in D, respectively. Noticing
the symmetry properties of ρ

(i)
D , we might as well define for F (i)

D (ϑ), i = 1, 2 as follows:

F (i)
D (ϑ) =

∫

�(ϑ)

ρ
(i)
D (0, z − z0) dφ = 2

∫ ϑ

0
ρ

(i)
D (0, z − z0) dφ, ϑ ∈ [0, π].

where �(ϑ) = {z = (x, y) ∈ ∂D : z − z0 = (cos(θ), sin(θ)), θ ∈ [0, ϑ] ∪ [2π − ϑ, 2π]} ,

ϑ ∈ [0, π]. And we write F (i)
δ,μ j

(ϑ), i = 1, 2; j = 1, 2, 3 as the corresponding first
and second-order simulation differences. Recall of the cμ j in Table 1, the definition for

F (i)
δ,μ j

(ϑ), i = 1, 2 are as follows:

F (1)
δ,μ j

(ϑ) = 1

cμ j δ

∫

�(ϑ)

(ωδ(0, dz; D) − ω(0, dz; D)) dφ, ϑ ∈ [0, π].

F (2)
δ,μ j

(ϑ) = 1

cμ j δ

(
F (1)

δ,μ j
(ϑ) − F (1)

D (ϑ)
)

, ϑ ∈ [0, π].

In this example, we do simulationswith δ = 0.1 forωδ(0, dz; D) by theMonte Carlomethod.
In our simulation, for each random walk δS

μ j
TD

, j = 1, 2, 3., we generate 3 × 109 samples.

For each sample, we run the
{
δS

μ j
n

}
n≥0

until it exits the domain D. Finally, we record the

exit point of δS
μ j
TD

on the ∂D. The simulation results and theoretical calculation results are
displayed in Figs. 1 and 2.

Example 4.3 Consider random walks
{
δS

μ j
n

}
n≥0

starting at 0 = (0, 0) with μ1 the uniform

distribution onB
2,μ2 the uniform distribution on ∂B

2,μ3 the 2-dimensional standard normal
distribution, μ4 the SRW on square planar lattice and μ5 the SRW on triangle planar lattice,
respectively. Let

D = {
(x, y) ∈ R

2 : −1 < |y| < 2
}
, ∂1 := {(x, y) ∈ R

2 : y = −1},
∂2 := {(x, y) ∈ R

2 : y = 2}.
Since the harmonic measure is conformally invariant, it is not difficult to deduce the Poisson
kernel with respect to Dδ = {

(x, y) ∈ R
2 : −1 − δ < |y| < 2 + δ

}
, i.e.

KDδ (0, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin
(

π
3+2δ (1+δ)

)

2(3+2δ)
(
cosh

(
πx
3+2δ

)
−cos

(
π

3+2δ (1+δ)
)) , z = (x, y) ∈ ∂1(δ);

sin
(

π
3+2δ (2+δ)

)

2(3+2δ)
(
cosh

(
πx
3+2δ

)
−cos

(
π

3+2δ (2+δ)
)) , z = (x, y) ∈ ∂2(δ).
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Fig. 1 The first-order rescaled difference F(1)
δ,μ j

(ϑ), i = 1, 2 from simulations with δ = 0.1

Fig. 2 The second-order rescaled difference F(2)
δ,μ j

(ϑ), i = 1, 2 from simulations with δ = 0.1

where ∂1(δ) := {(x, y) ∈ R
2 : y = −1 − δ}, ∂2(δ) := {(x, y) ∈ R

2 : y = 2 + δ}. Thence,

KD(0, z) = KD0(0, z) =
⎧⎨
⎩

1√
3(4 cosh(πx/3)−2)

, z = (x, y) ∈ ∂1;
1√

3(4 cosh(πx/3)+2)
, z = (x, y) ∈ ∂2.

By the equation (3.2), we can derive

ρ
(1)
D (0, z) =

⎧⎪⎨
⎪⎩

2
√
3πx sinh(πx/3)+(π−6

√
3) cosh(πx/3)−2π+3

√
3

27(1−2 cosh(πx/3))2
, z = (x, y) ∈ ∂1;

2
√
3πx sinh(πx/3)+(π−6

√
3) cosh(πx/3)+2π−3

√
3

27(2 cosh(πx/3)+1)2
, z = (x, y) ∈ ∂2.

and

ρ
(2)
D (0, z)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
486(2 cosh(πx/3)−1)3

[
− 12

√
3π2x2 +

(√
3π2(4x2−1)+120π − 144

√
3
)
cosh(πx/3)

+
(√

3π2(4x2−1)−24π+72
√
3
)
cosh(2πx/3)−28π2x sinh(πx/3)+48

√
3πx sinh(πx/3)

+4π2x sinh(2πx/3)−48
√
3πx sinh(2πx/3)+3

√
3π2−72π+108

√
3
]
, z=(x, y) ∈ ∂1;

1
486(2 cosh(πx/3)+1)3

[
− 12

√
3π2x2+

(√
3π2(1−4x2)−120π+144

√
3
)
cosh(πx/3)

+
(√

3π2(4x2−1)−24π+72
√
3
)
cosh(2πx/3)+28π2x sinh(πx/3)−48

√
3πx sinh(πx/3)

+4π2x sinh(2πx/3)−48
√
3πx sinh(2πx/3)+3

√
3π2−72π + 108

√
3
]
, z = (x, y) ∈ ∂2.

123



The High-Order Corrections of Discrete Harmonic Measures... Page 31 of 35    81 

Likewise, similar to the definition in Example 4.2. We use the function �(ϑ) of ϑ ∈ [0, π]
to parameterize the boundary of ∂D, more specifically,

�(ϑ) = {z = (x, y) ∈ ∂D : angle(z, (0, 1)) ≤ ϑ} , ϑ ∈ [0, π].
where angle(z, (0, 1)) means the vector angle between the z and z′ = (0, 1). With the
correction constants cμ j in Table 1 and Table 2, define

F (i)
D (ϑ) =

∫

�(ϑ)

ρ
(i)
D (0, z) dz, ϑ ∈ [0, π ];

F (1)
δ,μ j

(ϑ) = 1

cμ j δ

∫

�(ϑ)

(ωδ(0, dz; D) − ω(0, dz; D)), ϑ ∈ [0, π];

F (2)
δ,μ j

(ϑ) = 1

cμ j δ

(
F (1)

δ,μ j
(ϑ) − F (1)

D (ϑ)
)

, ϑ ∈ [0, π].

In this example, we do simulations with δ = 0.1 and generating 3× 109 samples for each

random walk
{
δS

μ j
n

}
n≥0

with μ j = 1, 2, 3 and with δ = 0.02, 108 samples for each random

walk
{
δS

μ j
n

}
n≥0

with μ j = 4, 5. The method use here is similar as that of Example 4.2 and

the simulation results are shown in Figs. 3 and 4.

Example 4.4 Consider randomwalks
{
δS

μ j
n

}
n≥0

starting at 0 = (0, 0, 0)withμ1 the uniform

distribution onB
3,μ2 the uniform distribution on ∂B

3,μ3 the 3-dimensional standard normal
distribution, μ4 the SRW on Z

3, respectively. Let

z0 =
(
0, 0,

1

3

)
, D = {

ζ ∈ R
3 : |ζ + z0| < 1

}
.

WriteKD(0, ζ ) andKB3(z0, z) for the Poisson kernels of D and B
3 respectively. Obviously,

KD(0, z − z0) = KB3(z0, z), z ∈ ∂B
3.

Introduce 3-dimensional spherical polar coordinates transform:

z = (r sin(φ) sin(θ), r sin(φ) cos(θ), r cos(φ)) , 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π, r ≥ 0.

From (4.1), KD(0, z − z0) = 3√
2π(5−3 cos(φ))3/2

.

By the equations (4.2), (4.3) and translation invariance, we can derive that

ρ
(1)
D (0, z − z0) = 33 − 63 cos(φ)

4
√
2π(5 − 3 cos(φ))5/2

, z ∈ ∂B
3.

and

ρ
(2)
D (0, z − z0) = 27(3 cos2(φ) + 20 cos(φ) − 15)

8
√
2π(5 − 3 cos(φ))7/2

, z ∈ ∂B
3.

A similar reason as that of Example 4.2, define

F (i)
D (ϑ) =

∫ 2π

0

∫ ϑ

0
ρ

(i)
D (0, z − z0) sin(φ) dφdθ, ϑ ∈ [0, π];

F (1)
δ,μ j

(ϑ) = 1

cμ j δ

∫ 2π

0

∫ ϑ

0
(ωδ(0, dz; D) − ω(0, dz; D)) sin(φ) dφdθ, ϑ ∈ [0, π];
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Fig. 3 The first-order rescaled difference F(1)
δ,μ j

(ϑ) from simulations in strip domain D

Fig. 4 The second-order rescaled difference F(2)
δ,μ j

(ϑ) from simulations with δ = 0.1 in strip domain D

F (2)
δ,μ j

(ϑ) = 1

cμ j δ

(
F (1)

δ,μ j
(ϑ) − F (1)

D (ϑ)
)

, ϑ ∈ [0, π].

We do simulations with δ = 0.1 and generating 3 × 109 samples for each random walk{
δS

μ j
n

}
n≥0

with μ j = 1, 2, 3 and with δ = 0.02, 2 × 108 samples for random walk
{
δSμ4

n
}
n≥0. The simulation results are shown in Figs. 5 and 6.

From Figs. 1–6, it seems that the simulation results agree very well with the conjectured
counterparts accordingly. Notice that there may be several factor which influence our simu-
lation results, such as the finite number of samples and δ not small enough. In fact, one of the
important errors between simulation and theory is that: if the δ is not small enough, there is
a small error between the correction constant in the simulation and the theoretical constant
cμ.
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Fig. 5 The first-order rescaled difference F(1)
δ,μ j

(ϑ) from simulations

Fig. 6 The second-order rescaled difference F(2)
δ,μ j

(ϑ) from simulations with δ = 0.1

5 Concluding Remarks

In this paper, we obtain the following simpler and easily computable expression for the first-
order correction constant cμ between discrete harmonic measures for random walks with
rotationally invariant step distribution μ in R

d (d ≥ 2) and the corresponding continuous
counterparts (refer to (1.10)):

cμ = lim
l→+∞ E

�
[∣∣∣Sμ

T
Hd

− Sμ
T
Hd

∣∣∣
]
, � = (0, · · · , 0, l) ∈ R

d .

Then the accurate value of cμ can be calculated through the overshoot of random walk for
1-dimensional randomwalks. For the non-rotational invariant step distributionsμ, we believe
cμ has a similar expression, refer to (3.9). Based on a heuristic deduction and several numer-
ical simulations, we propose a universality conjecture on high-order corrections between
generalized discrete harmonic measures and their continuous counterparts in d-dimensional
domain D ⊂ R

d , d ≥ 2.More clearly,when there is a universality of the first-order correction
between discrete harmonicmeasures and their continuous counterparts, the related high-order
corrections must also exist and have the corresponding universality expressions. For exam-
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ple, the random walk with a rotationally invariant step distribution, the SRW, RWNB, SKW,
and other random walks having a universality for the first-order corrections, we believe the
following expression also holds true for these discrete harmonic measures: for any n ∈ N,

lim
δ→0

1

δn

(
ωδ(0, dz; D) − ω(0, dz; D) −

n−1∑
k=1

(cμδ)kρ
(k)
D (0, z)|dz|

)
= cnμρ

(n)
D (0, z)|dz|.

For the details, see Conjectures 3.2 and 3.3.
Furthermore, we have studied numerically the exit distributions of rotational invariant

random walks on R
d , d = 2, 3, SRW on triangular planar lattice and SRW on Z

d , d = 2, 3.
All these simulations support the conjecture that the difference between the randomwalk exit
distributions and harmonic measures is, to the first-order and the second-order in the space
δ, given by

(cμδ)iρ
(i)
D (0, z) |dz|, i = 1, 2,

where the constant cμ depends only on the random walks, and the density function ρ
(i)
D (0, z)

depends only on the domains. Although we have not provided simulations beyond the third
order, but our Conjectures 3.2 and 3.3 suggests that higher-order simulations are also valid.
This is because they would require more powerful computers to achieve better simulation
results (i.e., smaller delta and more samples). We welcome scholars who are interested in
numerical simulations to conduct more in-depth simulations. Thus there is a sort of univer-
salities for these high-order corrections.

Finally, although several numerical simulation examples are given in this paper, it would
be interesting to domore test simulations for more randomwalks. Perhaps themost important
question for the future research is to prove Conjecture 3.3 for those classical random walks
on lattices. If we weaken the boundary condition of D and could find another effective way
to define ρ

(i)
D (0, z), Conjecture 3.3 may hold true for those domains D whose boundaries

are piecewise smooth. Refer to [23] for the numerical simulation evidence for the first-order
correction of two-dimensional discrete harmonic measures with respect to those D whose
boundaries are piecewise smooth. As pointed out by Kennedy [23], there is another very
natural way to define the ‘exit’ point in ∂D when the random walk exits D: By linearly
interpolating between the steps of the random walk so that it becomes a piece-wise linear
curve in R

d , we can consider the first point where this curve intersects ∂D as the exit point.
In this setting, Conjectures 3.2 and 3.3 may hold but with a possibly different correction
constant cμ.
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