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Abstract. We consider the Glauber dynamics for model of polymer interacting with a substrate or wall. The state space is the set of
one-dimensional nearest-neighbor paths on Z with nonnegative integer coordinates, starting at 0 and coming back to 0 after L (L ∈ 2N)
steps and the Gibbs weight of a path ξ = (ξx)L

x=0 is given by λN (ξ), where λ ≥ 0 is a parameter which models the intensity of the
interaction with the substrate and N (ξ) is the number of zeros in ξ . The dynamics proceeds by updating ξx with rate one for each
x = 1, . . . ,L − 1, in a heat-bath fashion. This model was introduced in (Electron. J. Probab. 13 (2008) 213–258) with the aim of
studying the relaxation to equilibrium of the system.

We present new results concerning the total variation mixing time for this dynamics when λ < 2, which corresponds to the phase
where the effects of the wall’s entropic repulsion dominates. For λ ∈ [0,1], we prove that the total variation distance to equilibrium
drops abruptly from 1 to 0 at time (L2 logL)(1 + o(1))/π2. For λ ∈ (1,2), we prove that the system also exhibits cutoff at time
(L2 logL)(1+ o(1))/π2 when considering mixing time from “extremal conditions” (that is, either the highest or lowest initial path for
the natural order on the set of paths). Our results improve both previously proved upper and lower bounds in (Electron. J. Probab. 13
(2008) 213–258).

Résumé. Nous considérons la dynamique de Glauber pour un modèle de polymère interagissant avec un substrat ou mur. L’espace
d’états est l’ensemble des chemins sur Z+ avec incréments ±1, commençant en 0 et revenant à 0 après L pas (L ∈ 2N). Le poids de
Gibbs d’un chemin est donné par λN (ξ), où λ≥ 0 est un paramètre qui modélise l’intensité de l’interaction avec le substrat et N (ξ) est
le nombre de zéros du chemin ξ . La dynamique procède en mettant à jour ξx avec taux un pour chaque x = 1, . . . ,L− 1 à la manière
d’un bain de chaleur. Ce modèle a été introduit dans (Electron. J. Probab. 13 (2008) 213–258) avec le but d’étudier la relaxation à
l’équilibre du système. Nous présentons des nouveaux résultats concernant le temps de mélange de cette dynamique pour la distance
en variation totale lorsque λ < 2. Ce régime correspond à la phase où les effets de répulsion entropique de la paroi dominent. Pour
λ ∈ [0,1], nous prouvons que la distance de variation totale à l’équilibre chute brusquement de 1 à 0 au temps (L2 logL)(1+o(1))/π2.
Pour λ ∈ (1,2), nous prouvons que le système présente également un “cutoff” au temps (L2 logL)(1 + o(1))/π2 en considérant le
temps de mélange à partir des conditions extrêmales (c’est-à-dire le chemin initial le plus élevé ou le plus bas pour l’ordre naturel sur
l’ensemble des chemins). Nos résultats améliorent les limites supérieures et inférieures déjà prouvées dans (Electron. J. Probab. 13
(2008) 213–258).
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1. Introduction

1.1. The random walk pinning model

Consider the set of all one-dimensional nearest-neighbor paths on Z with nonnegative integer coordinates, starting at 0
and coming back to 0 after L steps, i.e.

�L := {
ξ ∈ Z

L+1 : ξ0 = ξL = 0; |ξx+1 − ξx | = 1,∀x ∈ �0,L− 1�; ξx ≥ 0,∀x ∈ �0,L�
}
,

where L ∈ 2N, and �a, b� := Z ∩ [a, b] for all a, b ∈ R with a < b. We study the polymer pinning model. This model is
obtained by assigning to each path ξ ∈�L a weight λN (ξ), in which λ≥ 0 is the pinning parameter and

N (ξ) :=
L−1∑
x=1

1{ξx=0} (1.1)
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is the number of contact points with the x-axis. By convention, 00 := 1 and 0n := 0 for any positive integer n ≥ 1.
Normalizing the weights, we obtain a Gibbs probability measure μλ

L on �L, defined by

μλ
L(ξ) := λN (ξ)

ZL(λ)
, (1.2)

where ξ ∈�L and

ZL(λ) :=
∑

ξ ′∈�L

λN (ξ ′). (1.3)

The graph of ξ represents the spatial conformation of the polymer and λ models the energetic interaction with an impen-
etrable substrate which fills the lower half plane (λ < 1 corresponding to a repulsive interaction, λ > 1 to an attractive
one). Since ξx ≥ 0 for any ξ ∈ �L and any x ∈ �0,L�, we say that the polymers interact with an impenetrable substrate.
When there is no confusion, we drop the indices λ and L in μλ

L.
The random walk pinning model was introduced in the seminal paper [4] several decades ago, and its various derivative

models have been studied since. We refer to [5,6] for recent reviews, and mention [5, Chapter 2] and references therein
for more details. This model displays a transition from a delocalized phase to a localized phase (see [2, Section 1]): (a) if
0 ≤ λ < 2, the expected number of contacts μλ

L(N (ξ)) is uniformly bounded in L and the height of the middle point
ξL/2 is typically of order

√
L; (b) if λ > 2, the amount of contacts with the x-axis of typical paths is of order L and the

distribution of the height of the middle point ξL/2 is (exponentially) tight in L. These two phases are referred to as the
delocalized and localized phase respectively, at the critical point λ= 2 the system displays an intermediate behavior.

A dynamical version of this model was introduced more recently by Caputo et al. in [2]. The corner-flip Glauber
dynamics is a continuous-time reversible Markov chain on �L with μλ

L as the unique invariant probability measure,
whose transitions are given by the updates of local coordinates. We refer to Figure 1 for a graphical description of the
jump rates for the system. The dynamics is studied to understand how the system relaxes to equilibrium. Caputo et al. in
[2, Theorems 3.1 and 3.2] proved that for λ ∈ [0,2), the mixing time of the dynamics in �L is of order L2 logL, with
non-matching constant prefactors for the upper and lower bounds.

The goal of this paper is to improve both the upper and lower bounds proved in [2] and to show that the mixing time
of the system is exactly (1+ o(1))(L2 logL)/π2 for λ ∈ [0,2). We prove the result for the worst initial condition mixing
time when λ ∈ [0,1]. When λ ∈ (1,2), our result is valid only for the mixing time starting from either the lowest or
highest initial condition but we believe that this is only a technical restriction.

1.2. The dynamics

For ξ ∈�L and x ∈ �1,L− 1�, we define ξx ∈�L by

ξx
y :=

⎧⎪⎨⎪⎩
ξy if y 	= x,

(ξx−1 + ξx+1)− ξx if y = x and ξx−1 = ξx+1 ≥ 1 or ξx−1 	= ξx+1,

ξx if y = x and ξx−1 = ξx+1 = 0.

(1.4)

When ξx−1 = ξx+1, ξ displays a local extremum at x and we obtain ξx by flipping the corner of ξ at the coordinate x,
provided that the path obtained by flipping the corner is in �L (this excludes corner-flipping when ξx−1 = ξx+1 = 0). See
Figure 1 for a graphical representation. Given the probability measure μλ

L defined in (1.2), we construct a continuous-time
Markov chain whose generator L is given by its action on the functions R�L . It can be written explicitly as

(Lf )(ξ) :=
L−1∑
x=1

Rx(ξ)
[
f
(
ξx
)− f (ξ)

]
, (1.5)

where f : �L →R is a function, and

Rx(ξ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 if ξx−1 = ξx+1 > 1,
λ

1+λ
if (ξx−1, ξx, ξx+1)= (1,2,1),

1
1+λ

if (ξx−1, ξx, ξx+1)= (1,0,1),

0 if ξx−1 	= ξx+1 or ξx−1 = ξx+1 = 0.
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Fig. 1. A graphical representation of the jump rates for the system pinned at (0,0) and (L,0). A transition of the dynamics corresponds to flipping a
corner, whose rate depends on how it changes the number of contact points with the x-axis. The rates are chosen in a manner such that the dynamics is
reversible with respect to μλ

L
. The two red dashed corners are not available and labeled with ×, because of the nonnegative restriction of the state space

�L . Note that not all the possible transitions are shown in the figure.

Equivalently, we can rewrite the generator as

(Lf )(ξ)=
L−1∑
x=1

[
Qx(f )(ξ)− f (ξ)

]
, (1.6)

and

Qx(f )(ξ) := μλ
L

(
f |(ξy)y 	=x

)
.

Let (σ
ξ,λ
t )t≥0 be the trajectory of the Markov chain with initial condition σ

ξ,λ
0 = ξ and parameter λ, and let P

ξ,λ
t be

the law of distribution of the time marginal σ
ξ,λ
t . Since μλ

L(ξ)Rx(ξ) = μλ
L(ξx)Rx(ξ

x), the continuous-time chain is
reversible with respect to the probability measure μλ

L. This chain is called the Glauber dynamics. Because the Markov

chain is irreducible, by [13, Theorem 3.5.2] we know that for all ξ ∈ �L, P
ξ,λ
t converges to μλ

L in the discrete topology

as t tends to infinity. We ask a quantitative question: how long does it take for P
ξ,λ
t to converge to μλ

L, especially for the
worst initial starting path ξ ∈�L?

Let us state the aforementioned question in a mathematical framework. If α and β are two probability measures on the
space (�L,2�L), the total variation distance between α and β is

‖α − β‖TV := 1

2

∑
ξ∈�L

∣∣α(ξ)− β(ξ)
∣∣= sup

A⊂�L

(
α(A)− β(A)

)
. (1.7)

We define the distance to equilibrium at time t by

dL,λ(t) := max
ξ∈�L

∥∥P ξ,λ
t −μλ

L

∥∥
TV. (1.8)

For any given ε ∈ (0,1), let the ε-mixing-time be

T
L,λ
mix (ε) := inf

{
t ≥ 0 : dL,λ(t)≤ ε

}
. (1.9)

We say that this sequence of Markov chains has a cutoff, if for all ε ∈ (0,1),

lim
L→∞

T
L,λ

mix (ε)

T
L,λ
mix (1 − ε)

= 1. (1.10)

The cutoff phenomenon is surveyed in the seminal paper [3], and we refer to [12, Chapter 18] for more information. In
[2, Theorems 3.1 and 3.2], for all λ ∈ [0,2), Caputo et al. proved that for all δ > 0 and all ε ∈ (0,1), if L is sufficiently
large, we have

1 − δ

2π2
L2 logL≤ T

L,λ
mix (ε)≤ 6 + δ

π2
L2 logL. (1.11)
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Moreover, the spectral gap, denoted by gapL,λ, is the minimal positive eigenvalue of −L and the relaxation time T
L,λ

rel is
its inverse. That is

T
L,λ
rel := sup

f :VarL(f )>0
− VarL(f )

μλ
L(fLf )

= gap−1
L,λ, (1.12)

where VarL(f ) := μλ
L(f 2)− μλ

L(f )2 with μλ
L(f ) :=∑

ξ∈�L
μλ

L(ξ)f (ξ). There is no explicit eigenfunction of the gen-
erator L due to the effect of the impenetrable wall (i.e. the x-axis), but Caputo et al. adapted the idea in [15, Lemma 1] to
find a function (defined in (3.2) below) which is almost an eigenfunction. In [2, Theorems 3.1 and 3.2], they showed that
for all λ ∈ [0,2), there exists a universal constant C > 0 independent of L and λ, such that

C−1L2 ≤ T
L,λ
rel ≤ CL2, (1.13)

which together with (1.11) implies T
L,λ
rel � T

L,λ
mix ( 1

4 ) and then strongly indicates that Equation (1.10) should hold. Note

that the condition T
L,λ
rel � T

L,λ
mix ( 1

4 ) is not sufficient to imply the cutoff phenomenon, and we refer to [12, Notes in
Chapter 18] for an example.

1.3. Main results

In this paper, we find that the mixing time is (1 + o(1))(L2 logL)/π2 for all λ ∈ [0,1], improving both the lower and
upper bounds in [2]. That is the following theorem.

Theorem 1.1. For all ε ∈ (0,1) and all λ ∈ [0,1], we have

lim
L→∞

π2T
L,λ
mix (ε)

L2 logL
= 1. (1.14)

Therefore, there is a cutoff phenomenon in the Glauber dynamics for λ ∈ [0,1]. The reason why we include the result
for λ= 0 is the need for the mixing time about the dynamics when λ ∈ (1,2).

Remark 1. Theorem 1.1 about λ= 0 is the same as the case λ= 1 by the following identification. Let

�+
L := {

ξ ∈�L :N (ξ)= 0
}
, (1.15)

where N (ξ) is defined in (1.1), and identify �+
L with �L−2 by lifting the x-axis up by distance one in �L. Precisely,

the identification is as follows: ξ = (ξx)0≤x≤L ∈�+
L is identified with ς = (ςx)0≤x≤L−2 ∈�L−2, if ςx = ξx+1 − 1 for all

x ∈ �0,L− 2�. We can see:

(a) μ0
L is the same as the probability measure μ1

L−2;

(b) the dynamics (σ
ξ,0
t )t≥0 – living in the space �+

L – is the same as the dynamics (σ
ς,1
t )t≥0 living in the space �L−2,

where ξ ∈�+
L is identified with ς ∈�L−2.

Therefore, we only need to prove Theorem 1.1 for λ ∈ (0,1]. In addition, we have a partial result for λ ∈ (1,2). Let us
state the framework. We introduce a natural partial order “≤” on �L as follows(

ξ ≤ ξ ′
) ⇔ (∀x ∈ �0,L�, ξx ≤ ξ ′x

)
.

In other words, if ξ ≤ ξ ′, the path ξ lies below the path ξ ′. Then the maximal path ∧ and the minimal path ∨ are
respectively given by

∧x := min(x,−x +L), ∀x ∈ �0,L�;
∨x := x − 2�x/2�, ∀x ∈ �0,L�,

where �x/2� := sup{n ∈ Z : n≤ x/2}. Define

T
L,∧
mix (ε) := inf

{
t ≥ 0 : ∥∥P∧,λ

t −μλ
L

∥∥
TV ≤ ε

}
,

T
L,∨
mix (ε) := inf

{
t ≥ 0 : ∥∥P∨,λ

t −μλ
L

∥∥
TV ≤ ε

}
,



1310 S. Yang

and

T̆ L
mix(ε) := max

(
T

L,∧
mix , T

L,∨
mix

)
. (1.16)

For λ ∈ (1,2), applying Peres–Winkler censoring inequality in [14, Theorem 1.1], we discover that the mixing time is
also (1 + o(1))(L2 logL)/π2 for the dynamics starting with the two extremal paths. That is the following theorem.

Theorem 1.2. For all ε ∈ (0,1) and λ ∈ (1,2), we have

lim
L→∞

π2T̆ L
mix(ε)

L2 logL
= 1. (1.17)

1.4. Other values of λ

Our analysis excludes the case λ > 2, let us just mention that the convergence to equilibrium follows a different pattern
in this case. While the relaxation time and the mixing time are of order L2 and L2 logL respectively in the repulsive
phase λ < 2, it is believed that they become of order L and L2 respectively in the attractive phase λ > 2. Rigorous lower
bound has been proved in [2, Theorem 3.2], but matching order upper bound has only been shown when λ = ∞ ([2,
Proposition 5.6] for the mixing time). Furthermore in [9, Theorem 2.7], it is shown that in this last case the mixing time
is equal to L2/4(1 + o(1)). When λ ∈ (2,∞), the conjecture in [9, Section 2.7] seems to indicate that the mixing time
should be of order C(λ)L2(1 + o(1)) for some explicit C(λ).

At the critical value λ= 2, we believe that the mixing time continues to be L2

π2 (logL)(1+ o(1)) but our techniques do
not allow to treat this case.

1.5. Open questions

Another common distance for measuring how well the Markov chain is mixed is the separation distance, which is defined
for any two probability measures α, β on (�L,2�L) as

dS(α,β) := max
ξ∈�L

(
1 − α(ξ)

β(ξ)

)
.

Note that it is not a metric for example: taking α := 1
2δ∧ + 1

2δ∨ and β := 1
3δ∧ + 2

3δ∨ on the space (�L,2�L), and then
dS(α,β) 	= dS(β,α) with convention 0/0 = 1. The separation distance to equilibrium of the dynamics is defined to be

sL,λ(t) := max
ξ∈�L

dS

(
P

ξ,λ
t ,μλ

L

)
, (1.18)

and [12, Lemma 6.16 and Lemma 6.17] tell that

dL,λ(t)≤ sL,λ(t)≤ 4dL,λ(t/2),

where the last inequality assumes the reversibility of the dynamics. Moreover, for ε ∈ (0,1) we define the ε-separation
mixing time as

T L,λ
sep (ε) := inf

{
t ≥ 0 : sL,λ(t)≤ ε

}
. (1.19)

As the heuristic in [15, Section 10.2], we believe that

sL,λ(t)= 1 − P∧
t (∨)

μ(∨)
,

and the dynamics (σ∧
t )t≥0 takes time at most (1+ δ) 1

π2 L2 logL to reach equilibrium in the total variation distance while

the dynamics (σ∨
t )t≥0 takes time of order L2 to reach equilibrium. Therefore, we expect that for all ε ∈ (0,1) and all

λ ∈ [0,2)

lim
L→∞

π2T
L,λ
sep (ε)

L2 logL
= 1. (1.20)



Cutoff for polymer pinning 1311

In Proposition 3.1, we show that for λ ∈ (0,2),

lim
c→∞ lim inf

L→∞ dL,λ

(
1

π2
L2 logL− cL2

)
= 1. (1.21)

However, our approach in Proposition 4.2 below is not refined enough to show that for λ ∈ (0,1]

lim
c→∞ lim sup

L→∞
dL,λ

(
1

π2
L2 logL+ cL2

)
= 0, (1.22)

which is believed to be true. A plausible approach is to use the multiscale analysis as in [11, Theorem 1.1] to improve
Lemma 4.4 below such that T2 = 1

π2 L2 logL+ CL2 with high probability for C sufficiently large instead of T2 = (1 +
δ
2 ) 1

π2 L2 logL. Concerning the problem whether the dynamics mixes in time N2 starting from a typical initial condition,
we believe that the approach in [11] probably works but requires a lot of efforts.

Concerning the cutoff profile, even though  defined in (3.2) is good at playing the role of the eigenfunction, the
fluctuations of �(ξ), defined in (3.4), at equilibrium are not Gaussian (simply because �(ξ) is positive). For this reason,
we believe that the profile is NOT gaussian as in [11].

1.6. Organization of the paper

Section 2 introduces a grand coupling for the dynamics corresponding to different ξ and λ, and some useful reclaimed
results.

Section 3 is dedicated to the lower bound on the mixing time for λ ∈ (0,2).
Section 4 supplies the upper bound on the mixing time for λ ∈ (0,1].
Section 5 is about the upper bound on the mixing time for the dynamics starting with the two extremal paths when

λ ∈ (1,2), applying censoring inequality.

1.7. Notation

We use “:=” to define a new quantity on the left-hand side, and use “=:” in some cases when the quantity is defined on
the right-hand side.

We let (Cn(λ))n∈N and (cn(λ))n∈N be some positive constants, which are only dependent on λ. Additionally, we let
(cn)n∈N and (Cn)n∈N be some positive and universal constants.

2. Technical preliminaries

To use the monotonicity of the Glauber dynamics, we provide a graphical construction of the Markov chain such that all
dynamics, i.e. {(σ ξ,λ

t )t≥0 : ∀ξ ∈ �L,∀λ ∈ [0,∞)}, live in one common probability space. This construction appears in
[10, Section 8.1], which provides more independent flippable corners than the coupling in [2, Section 2.2.1].

2.1. A graphical construction

We set the exponential clocks and independent “coins” in the centers of the squares formed by all the possible corners
and their counterparts. Let

� := {
(x, z) : x ∈ �2,L− 2�, z ∈ �1,L/2 − 1 − |x −L/2|�;x + z ∈ 2N+ 1

}
, (2.1)

and let T ↑ and T ↓ be two independent rate-one exponential clock processes indexed by �. That is to say, for every
(x, z) ∈� and n≥ 0, we have T ↑

(x,z)
(0)= 0, and(

T ↑
(x,z)(n)− T ↑

(x,z)(n− 1)
)
n≥1

is a field of i.i.d. exponential random variables with mean 1. Similarly, this holds for T ↓
(x,z). Moreover, let U↑ =

(U
↑
(x,z)(n))(x,z)∈�,n≥1 and U↓ = (U

↓
(x,z)(n))(x,z)∈�,n≥1 be two independent fields of i.i.d. random variables uniformly

distributed in [0,1], which are independent of T ↑ and T ↓. Given T ↑, T ↓, U↑ and U↓, we construct, in a deterministic
way, (σ

ξ,λ
t )t≥0 the trajectory of the Markov chain with parameter λ and starting with ξ ∈�L, i.e. σ

ξ,λ
0 = ξ .

When the clock process T ↑
(x,z) rings at time t = T ↑

(x,z)(n) for n≥ 1 and σ
ξ,λ

t− (x)= z− 1, we update σ
ξ,λ

t− as follows:
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• if σ
ξ,λ

t− (x − 1) = σ
ξ,λ

t− (x + 1) = z ≥ 2 and U(x,z)(n)↑ ≤ 1
2 , let σ

ξ,λ
t (x) = z + 1 and the other coordinates remain un-

changed;
• if σ

ξ,λ

t− (x−1)= σ
ξ,λ

t− (x+1)= z = 1 and U
↑
(x,z)(n)≤ 1

1+λ
, let σ

ξ,λ
t (x)= 2 and the other coordinates remain unchanged.

If neither of these two aforementioned conditions is satisfied, we do nothing.
When the clock process T ↓

(x,z) rings at time t = T ↓
(x,z)(n) for n≥ 1 and σ

ξ,λ

t− (x)= z+ 1, we update σ
ξ,λ

t− as follows:

• if σ
ξ,λ

t− (x − 1) = σ
ξ,λ

t− (x + 1) = z ≥ 2 and U
↓
(x,z)(n) ≤ 1

2 , let σ
ξ,λ
t (x) = z − 1 and the other coordinates remain un-

changed;
• if σ

ξ,λ

t− (x − 1) = σ
ξ,λ

t− (x + 1) = z − 1 = 0 and U
↓
(x,z)(n) ≤ λ

1+λ
, let σ

ξ,λ
t (x) = 0 and the other coordinates remain

unchanged.

If neither of these two aforementioned conditions is satisfied, we do nothing.
Let P or E stand for the probability law corresponding to T ↑, T ↓, U↑ and U↓. Recall that μλ

L is the stationary

probability measure for the dynamics. The dynamics (σ
μ,λ
t )t≥0 is constructed by first taking the initial path ξ sampling

from μ at t = 0 and then using the graphical construction with parameter λ for t > 0. This sampling is independent of P.
Define P

μ,λ
t (·) := P(σ

μ,λ
t = ·), and likewise P

μ,λ
t (A) := P[σμ,λ

t ∈A] for A ⊂ �L. When it is clear in the context, we
use the notations (σ

μ
t )t≥0 and P

μ
t , ignoring the parameter λ.

This graphical construction allows us to construct all the trajectories (σ
ξ,λ
t )t≥0 starting from all ξ ∈�L and all parame-

ters λ ∈ [0,∞) simultaneously. It preserves the order, affirmed in the following proposition. The proof of this proposition,
which we omit, is almost identical to that of [10, Proposition 3.1].

Proposition 2.1. Let ξ and ξ ′ be two elements of �L satisfying ξ ≤ ξ ′, and 0 ≤ λ ≤ λ′. With the graphical construction
above, we have

P[∀t ∈ [0,∞) : σ ξ,λ
t ≤ σ

ξ ′,λ
t

]= 1,

P[∀t ∈ [0,∞) : σ ξ,λ′
t ≤ σ

ξ,λ
t

]= 1.

(2.2)

2.2. Useful reclaimed results

We have the asymptotic information about ZL(λ), which is:

Theorem 2.2 (Theorem 2.1 in [2]). For every λ ∈ [0,2), we have

lim
L→∞

ZL(λ)

2LL−3/2
= C(λ), (2.3)

where C(λ) > 0 is a constant, only dependent on λ.

Furthermore, to understand the Glauber dynamics, it is important to understand how the generator L acts on the paths
in �L. Let us introduce the settings. For a function g : �0,L� →R, the discrete Laplace operator � is defined as follows:
for any x ∈ �1,L− 1�,

(�g)x := 1

2

(
g(x − 1)+ g(x + 1)

)− g(x).

Besides, we define a function f : �L �→ R to be f (ξ) := ξx , and let Lξx := (Lf )(ξ) for x ∈ �1,L − 1�. Considering
(1.6), we know that Lξx = μλ

L(ξx |ξx−1, ξx+1) − ξx , and a calculation yields the following identity which we recall as a
lemma.

Lemma 2.3 (Lemma 2.3 in [2]). For every λ > 0 and every x ∈ �1,L− 1�, we have

Lξx = (�ξ)x + 1{ξx−1=ξx+1=0} −
(

λ− 1

λ+ 1

)
1{ξx−1=ξx+1=1}. (2.4)
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3. Lower bound on the mixing time for λ ∈ (0,2)

This section is devoted to providing a lower bound on the mixing time of the Glauber dynamics for λ ∈ (0,2), which is
the following proposition.

Proposition 3.1. For all λ ∈ (0,2) and all ε ∈ (0,1), we have

T
L,λ
mix (ε)≥ 1

π2
L2 logL−C(λ, ε)L2 =: tC(λ,ε), (3.1)

where C(λ, ε) > 0 is a constant, only dependent on λ and ε.

Before we start the proof of Proposition 3.1, let us explain the idea. Note that the function (ξ), defined in (3.2) below,
is almost the area enclosed by the x-axis and the path ξ ∈�L. Intuitively, (∧) is of order L2, while at equilibrium (ξ)

is of order L3/2. The second moment method in [2, Theorem 3.2] does not supply a sharp lower bound on the mixing
time. We adapt the idea in [2, Theorem 3.2] to provide the lower bound in (3.1) by proving the following.

(i) While the expected equilibrium value μ() is at most of order L3/2, E[(σ∧
t )] is much bigger than L3/2 for all

t ≤ tC(λ,ε);
(ii) On the one hand (σ

μ
t ) is fairly close to its mean μ() by Markov’s inequality, and on the other hand (σ∧

t ) is well
concentrated around E[(σ∧

t )] by controlling its fluctuation through martingale approach.

Section 3.1 prepares all the ingredients for the first step of this strategy, and Section 3.2 is dedicated to the second step of
the strategy, giving the proof of Proposition 3.1.

3.1. Ingredients for the lower bound of the mixing time

Inspired by [15, Equation (1)], Caputo et al. in [2, Equation (2.39)] defined the weighted area function  : �L →R by

(ξ) :=
L−1∑
x=1

ξx sin(x), (3.2)

where sin(x) := sin(πx
L

) and ξ ∈�L. As [2, Equation (4.3)], we use Lemma 2.3 and summation by part to obtain

(L)(ξ)=
L−1∑
x=1

sin(x)Lξx =−κL(ξ)+�(ξ), (3.3)

where κL := 1 − cos(π
L
) and

�(ξ) :=
L−1∑
x=1

sin(x)

[
1{ξx−1=ξx=1=0} −

(
λ− 1

λ+ 1

)
1{ξx−1=ξx+1=1}

]
. (3.4)

Since sin(x)≥ 0 for all x ∈ �0,L�, we have

∣∣�(ξ)
∣∣≤ L−1∑

x=1

sin(x)

[
1{ξx−1=ξx=1=0} +

∣∣∣∣λ− 1

λ+ 1

∣∣∣∣1{ξx−1=ξx+1=1}
]
=:�(ξ). (3.5)

Caputo et al. gave an upper bound on μλ
L(). In [2, Equation (5.15)], they used coupling and monotonicity to obtain that

for every positive integer k,

sup
λ≥0,L∈2N

sup
x∈�1,L−1�

μλ
L

(
(ξx)

k

Lk/2

)
<∞.

Consequently, using k = 1 and sin(x)≤ 1, we have

μλ
L()≤

L−1∑
x=1

μλ
L(ξx)≤ cL3/2, (3.6)
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where c > 0 does not depend on λ. In addition, Caputo et al. also gave a lower bound on E[(σ∧
t )], which we recall as a

lemma below.

Lemma 3.2 (Equation (5.24) in [2]). For all λ ∈ (0,2), all t ≥ 0, all L≥ 2 and some constant c(λ) > 0, we have

E
[

(
σ∧

t

)]≥
(
σ∧

0

)
e−κLt − c(λ)L3/2.

In view of (3.5), we need an upper bound on P[σ∧
t (x − 1) = σ∧

t (x + 1) ∈ {0,1}] for x ∈ �1,L − 1�, which is the
following lemma.

Lemma 3.3. For all t ≥ 0, all x ∈ �1,L− 1� and all L≥ 2, we have

P
[
σ∧

t (x − 1)= σ∧
t (x + 1) ∈ {0,1}]≤ C1(λ)

L3/2

x3/2(L− x)3/2
. (3.7)

Proof. Since σ∧
t ≥ σ

μ
t for all t ≥ 0, we know that for all x ∈ �1,L− 1�,

P
[
σ∧

t (x − 1)= σ∧
t (x + 1) ∈ {0,1}]≤ P

[
σ

μ
t (x − 1)= σ

μ
t (x + 1) ∈ {0,1}]

= μλ
L

(
ξx−1 = ξx+1 ∈ {0,1}).

For all λ ∈ (0,2), all x ∈ �1,L− 1� ∩ 2N and all L≥ 2, applying Theorem 2.2, we obtain

μλ
L(ξx = 0)= λ

Zx(λ)ZL−x(λ)

ZL(λ)
≤ C2(λ)

L3/2

x3/2(L− x)3/2
, (3.8)

and

μλ
L(ξx−1 = ξx+1 = 0)= λ2 Zx−1(λ)ZL−x−1(λ)

ZL(λ)
≤ C2(λ)

L3/2

x3/2(L− x)3/2
. (3.9)

With the same conditions about λ, x and L above, as [2, Equation (5.23)] we have

μλ
L(ξx−1 = ξx+1 = 1)= 1 + λ

λ
μλ

L(ξx = 0). (3.10)

Therefore, by (3.8), (3.9) and (3.10), we obtain (3.7). �

3.2. Proof of the lower bound on the mixing time

Let us detail the second step of the aforementioned strategy. To prove that (σ∧
t ) is well concentrated around its mean

E[(σ∧
t )], we do the following.

(i) For a fixed time t0, we use the function F(t, ξ)= exp(κL(t − t0))(ξ) to construct a Dynkin’s martingale M (see [7,
Lemma 5.1 in Appendix 1]).

(ii) To estimate the fluctuation of F(t0, σ
∧
t0

) = (σ∧
t0

), we control the martingale bracket 〈M.〉 and the mean of (∂t +
L)F (t, σ∧

t ), which comes from the construction of Dynkin’s martingale.

While (σ
μ
t ) is at most of order L3/2, (σ∧

t0
) is much bigger than L3/2 for all t0 ≤ tC(λ,ε). This property of  about σ

μ
t

and σ∧
t0

can be used to provide a lower bound on the distance between μ and P∧
t0

.

Proof of Proposition 3.1. We adapt the approach in [2, Proposition 5.3]. For C ∈ (0,∞), define

AC := {
ξ ∈�L :(ξ)≤ CL3/2}. (3.11)

Using Markov’s inequality and (3.6), we obtain

1 −μ(AC)= μ
(
 > CL3/2)≤ μ()

CL3/2
≤ c

C
, (3.12)
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where the rightmost term is smaller than or equal to ε/2 for C ≥ 2c/ε. Our next step is to prove that for any given ε > 0,
if t0 ≤ tC(λ,ε), we have

P∧
t0

(AC)≤ ε/2.

In order to obtain such an upper bound, we construct a Dynkin’s martingale and control its fluctuation. Let t0 be a fixed
time, we define a function F : [0, t0] ×�L →R by

F(t, ξ) := eκL(t−t0)(ξ).

We recall that σ∧
t , defined in Section 2.1, is the dynamics at time t starting with the maximal path ∧. Further, we define

a Dynkin’s martingale by

Mt := F
(
t, σ∧

t

)− F
(
0, σ∧

0

)− ∫ t

0
(∂s +L)F

(
s, σ∧

s

)
ds. (3.13)

Applying (L)(ξ)=−κL(ξ)+�(ξ) in (3.3), we obtain

(∂t +L)F
(
t, σ∧

t

)= eκL(t−t0)�
(
σ∧

t

)
. (3.14)

For simplicity of notation, set

B(t) :=
∫ t

0
eκL(s−t0)�

(
σ∧

s

)
ds. (3.15)

Now we give an upper bound on E[M2
t ] by controlling the martingale bracket 〈M.〉, which is such that the process

(M2
t −〈M.〉t )t≥0 is a martingale with respect to its natural filtration. Since there is at most one transition at each coordinate

and each transition can change the value of Mt in absolute value by at most 2eκL(t−t0), we have

∂t 〈M.〉t ≤
L−1∑
x=1

4e2κL(t−t0) ≤ 4Le2κL(t−t0).

As M0 = 0 and κL = 1 − cos(π
L
)≥ π2

4L2 for all L≥ 4, we obtain

E
[
M2

t0

]= E
[〈M.〉t0

]≤ ∫ t0

0
4Le2κL(t−t0) dt ≤ 8L3

π2
. (3.16)

Furthermore, we give an upper bound for the mean of B(t0), defined in (3.15). Recalling the definitions of � and � in
(3.4) and (3.5) respectively, we have

E
[∣∣B(t0)

∣∣]≤ E

[∫ t0

0
eκL(t−t0)�

(
σ∧

t

)
dt

]
≤ E

[∫ t0

0
eκL(t−t0)�

(
σ

μ
t

)
dt

]

≤ C3(λ)κ−1
L

L−1∑
x=1

sin(x)
L3/2

x3/2(L− x)3/2

≤ C4(λ)L3/2. (3.17)

The first inequality uses |�(ξ)| ≤ �(ξ) for all ξ ∈ �L. The second inequality is due to two facts: (1) �(ξ) ≤ �(ξ ′)
for ξ ≤ ξ ′; and (2) σ∧

t ≥ σ
μ
t . In the third inequality, we use Fubini’s Theorem to interchange the orders of integration

and expectation, and use Lemma 3.3 to give an upper bound for E[�(σ
μ
t )]. In the last inequality, we use the following

inequality:

sin(x)= sin

(
πx

L

)
≤ min(x,L− x)π

L
.
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Here and now, we try to find the suitable small t0 such that (σ∧
t0

) is much larger than L3/2 with high probability. We

note that (σ∧
0 )≥ 1

36L2 and κL ≤ π2

2L2 for all L≥ 2. Let C ≥ 1, and define

t0 := 1

π2
L2 logL−CL2.

If t0 ≤ 0, nothing needs to be done (for L≤ 4, t0 ≤ 0). In the remaining of this subsection, we assume t0 > 0. Then for all
L≥ 2, t0κL ≤ 1

2 logL−C. Moreover, there exists a universal constant C0 ≥ 1 such that if C ≥ C0, we have

1

36
eC ≥ 3C.

By Lemma 3.2, for all C ≥ max(C0, c(λ)), we have

E
[

(
σ∧

t0

)]≥ 3CL3/2 − c(λ)L3/2 ≥ 2CL3/2.

Then, if (σ∧
t0

)≤ CL3/2 (i.e. σ∧
t0
∈AC , defined in (3.11)), it implies∣∣(σ∧

t0

)−E
[

(
σ∧

t0

)]∣∣≥ CL3/2

and

P∧
t0

(AC)≤ P
[∣∣(σ∧

t0

)−E
[

(
σ∧

t0

)]∣∣≥CL3/2]. (3.18)

In addition, recalling (σ∧
t0

)= F(t0, σ
∧
t0

)=Mt0 + F(0, σ∧
0 )+B(t0) in (3.13) and using Markov’s inequality, we obtain

P
[∣∣(σ∧

t0

)−E
[

(
σ∧

t0

)]∣∣≥ CL3/2]
= P

[∣∣Mt0 +B(t0)−E
[
B(t0)

]∣∣≥ CL3/2]
≤ P

[
|Mt0 | ≥

1

3
CL3/2

]
+ P

[∣∣B(t0)
∣∣≥ 1

3
CL3/2

]

≤ 9E[M2
t0
]

C2L3
+ 3E[|B(t0)|]

CL3/2
, (3.19)

where the second last inequality holds for C > 3C4(λ) by E[|B(t0)|] ≤ C4(λ)L3/2 in (3.17). The last term in (3.19) is

smaller than or equal to ε/2 for C ≥ max( 18
π
√

ε
,

12C4(λ)
ε

), on account of E[M2
t0
] ≤ 8L3

π2 in (3.16) and (3.17). Combining
(3.12), (3.18) and (3.19), we know that∥∥P∧

t0
−μ

∥∥
TV ≥ μ(AC)− P∧

t0
(AC)≥ 1 − ε, (3.20)

which holds for C ≥ max{ 2c
ε

,C0,3C4(λ), 18
π
√

ε
,

12C4(λ)
ε

} =: C(λ, ε). Therefore, for C ≥C(λ, ε), we have

T
L,λ
mix (ε)≥ 1

π2
L2 logL−CL2. �

4. Upper bound on the mixing time for λ ∈ (0,1]

This section is devoted to providing an upper bound on the mixing time of the dynamics for the regime λ ∈ (0,1]. For
any ξ ∈�L, by the triangle inequality, we have∥∥P ξ

t − P
μ
t

∥∥
TV ≤

∑
ξ ′∈�L

μ
(
ξ ′
)∥∥P ξ

t − P
ξ ′
t

∥∥
TV ≤ max

ξ ′∈�L

∥∥P ξ
t − P

ξ ′
t

∥∥
TV. (4.1)

To give an upper bound for the term in the rightmost hand side above, we use the following characterization of total
variation distance. Let α and β be two probability measures on �L. We say that ϑ is a coupling of α and β , if ϑ is a
probability measure on �L ×�L such that ϑ(ξ ×�L)= α(ξ) and ϑ(�L × ξ ′)= β(ξ ′) for any elements ξ, ξ ′ ∈�L. The
following proposition says that the total variation distance measures how well we can couple two random variables with
distribution laws α and β respectively.
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Proposition 4.1 (Proposition 4.7 [12]). Let α and β be two probability distributions on �L. Then

‖α − β‖TV = inf
{
ϑ
({(

ξ, ξ ′
) : ξ 	= ξ ′

}) : ϑ is a coupling of α and β
}
.

The graphical construction in Section 2.1 provides a coupling between P
ξ
t and P

ξ ′
t , which preserves the monotonicity

asserted in Proposition 2.1. Therefore, σ
ξ
t lies between σ∨

t and σ∧
t for any ξ ∈�L. Applying Proposition 4.1, we obtain∥∥P ξ

t − P
ξ ′
t

∥∥
TV ≤ P

[
σ

ξ
t 	= σ

ξ ′
t

]≤ P
[
σ∧

t 	= σ∨
t

]
, (4.2)

where the last inequality is due to the fact that after the dynamics starting from the two extremal paths have coalesced, we
must have σ∧

t = σ
ξ
t = σ∨

t for any ξ ∈ �L. This argument was used in [2, Theorem 3.1] to obtain an upper bound on the
mixing time. Comparing with the coupling in [2, Section 2.2.1], the graphical construction in Section 2.1 provides more
independent flippable corners and maximizes the fluctuation of the area enclosed by σ∧

t and σ∨
t . Adapting the approach

in [8, Section 7], we use a supermartingale approach to have a good control of the fluctuation of the area enclosed by σ∧
t

and σ∨
t to obtain a sharp upper bound on the mixing time. Let the coalescing time τ be

τ := inf
{
t ≥ 0 : σ∧

t = σ∨
t

}
,

which is the first instant when the dynamics starting from the two extremal paths coalesce. By (4.1) and (4.2), we obtain

dL,λ(t)≤ P
[
σ∧

t 	= σ∨
t

]= P[τ > t]. (4.3)

In this section, our goal is to show that for any given δ > 0 and all L sufficiently large, with high probability, we have

τ ≤ 1 + δ

π2
L2 logL.

We adapt the approach in [8, Section 7] to achieve this goal. In practice, it is more feasible to couple two dynamics when,
at least, one of them is at equilibrium. Let

τ1 := inf
{
t ≥ 0, σ∧

t = σ
μ
t

}
,

τ2 := inf
{
t ≥ 0, σ∨

t = σ
μ
t

}
,

(4.4)

where we recall that the dynamics (σ
μ
t )t≥0 is constructed by first taking the initial path ξ by sampling μ at t = 0 and then

using the graphical construction for t > 0. By the definition of τ , we know that

τ = max(τ1, τ2).

For this goal, it is sufficient to prove the following proposition.

Proposition 4.2. For i ∈ {1,2}, any given λ ∈ (0,1] and δ > 0, we have

lim
L→∞P

[
τi ≤ (1 + δ)

1

π2
L2 logL

]
= 1. (4.5)

Theorem 1.1 is proved as a combination of Proposition 3.1 and Proposition 4.2. Therefore, there is a cutoff in the
Markov chains for λ ∈ (0,1]. Since the proofs about τ1 and τ2 in Proposition 4.2 are similar, we only give the proof of
(4.5) for τ1. For any given δ > 0, set

tδ := (1 + δ)
1

π2
L2 logL.

We outline the idea for the proof. We define a weighted area function At in (4.9) below, which is almost the area enclosed
by the paths σ∧

t and σ
μ
t at time t . Moreover, (At )t≥0 is a surpermartingale when λ ∈ (0,1]. Due to this, we obtain that at

time tδ/2 = (1 + δ
2 ) 1

π2 L2 logL, Atδ/2 is close to equilibrium. After time tδ/2, we estimate the fluctuation of (At )t≥tδ/2 by
the supermartingale approach applying [8, Proposition 29], and then relate the time interval with the fluctuation to obtain
(4.5).
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4.1. A weighted area function

In this subsection, we define an area function At . First, inspired by [15, Equation (1)], we define a function β : �L →
[0,∞) given by

β(ξ) :=
L−1∑
x=1

ξx cosβ(x),

where cosβ(x) := cos(β(x−L/2)
L

), and β is a constant in (2π/3,π). The constant β is only dependent on δ and sufficiently
close to π , which will be chosen in the proof of Lemma 4.4 below. We can see that β(ξ) is approximately the area
enclosed by the x-axis and the path ξ ∈ �L. Throughout this paper, we omit the index β in β and cosβ as much as
possible. Observe that if ξ and ξ ′ are two elements of �L satisfying ξ ≤ ξ ′, then

(ξ)≤
(
ξ ′
)
. (4.6)

The minimal increment of the function  is

δmin := min
ξ≤ξ ′,ξ 	=ξ ′

(

(
ξ ′
)−(ξ)

)= 2 cos

(
β(L/2 − 1)

L

)
, (4.7)

and

2 cos

(
β(L/2 − 1)

L

)
≥ 1

2
(π − β) (4.8)

for L≥ 6 and β ∈ (2π/3,π), where we use the inequality cos(π/2− x)= sinx ≥ x/2 for x ∈ [0,π/3]. Let the weighted
area function A : [0,∞) �→ [0,∞) be

At := (σ∧
t )−(σ

μ
t )

δmin
. (4.9)

We observe that τ1, defined in (4.4), is the first time at which At reaches zero. Moreover, At equals to zero if and only if
σ∧

t equals to σ
μ
t . If τ1 ≤ tδ/2, we are done. In the rest of this section, we assume τ1 > tδ/2.

Take η > 0 and sufficiently small, and K := �1/(2η)�. We define a sequence of successive stopping times (Ti )
K
i=2 by

T2 := inf
{
t ≥ tδ/2 :At ≤ L

3
2−2η

}
,

and for 3 ≤ i ≤K ,

Ti := inf
{
t ≥ Ti−1 :At ≤L

3
2−iη

}
.

For consistency of notations, we set T∞ := max(τ1, tδ/2). The remaining of this section is devoted to proving the following
proposition.

Proposition 4.3. Given δ > 0, if η is chosen to be a sufficiently small positive constant with K = �1/(2η)�> 1/(2η), we
have

lim
L→∞P

[
{T2 = tδ/2} ∩

(
K⋂

i=3

{
�Ti ≤ 2−iL2})∩ {T∞ − TK ≤L2}]= 1,

where �Ti := Ti − Ti−1 for 3 ≤ i ≤K .

If Proposition 4.3 holds, for L sufficiently large, we have

τ1 = T∞ ≤ tδ/2 +
K∑

i=3

2−iL2 +L2 ≤ (1 + δ)
1

π2
L2 logL.

Then Proposition 4.2 is proved. The idea for Proposition 4.3 is from [8, Section 7] as follows:
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1. We first show that the decay rate of At is at least 1 − cos(π
L
), and then we obtain T2 = tδ/2 with high probability.

2. During the time interval [Ti−1,Ti] for 3 ≤ i ≤ K , we apply the surpermartingale approach ([8, Proposition 29]) to
show that with high probability

〈A.〉Ti
− 〈A.〉Ti−1 ≤ L3−2(i−1)η+ 1

2 η.

Similarly for the time interval [TK,T∞], we apply [8, Proposition 29] to show that with high probability

〈A.〉T∞ − 〈A.〉TK
≤ L2.

3. We compare T∞ − TK with 〈A.〉T∞ − 〈A.〉TK
. As ∂t 〈A.〉 ≥ 1 for all t < T∞, we have

T∞ − TK ≤
∫ T∞

TK

∂t 〈A.〉dt = 〈A.〉T∞ − 〈A.〉TK
.

For 3 ≤ i ≤ K , to compare 〈A.〉Ti
− 〈A.〉Ti−1 with Ti − Ti−1, we provide a better lower bound on ∂t 〈A.〉 in terms of

the highest point of σ∧
t and the maximal length of a monotone segment of σ

μ
t in Lemma 4.7.

4. We use induction method to show that Ti − Ti−1 ≤ 2−iL2 for all i ∈ �3,K�, arguing by contradiction.

4.2. The proof of T2 = tδ/2

The main task of this subsection is to prove that the function At has a contraction property, due to which we obtain
T2 = tδ/2 with high probability. Above all, we want to understand how the generator L acts on the function . We have

(L)(ξ)=
L−1∑
x=1

cos(x)Lξx.

We recall Lemma 2.3: for any ξ ∈�L,

Lξx = (�ξ)x + 1{ξx−1=ξx+1=0} +
(

1 − λ

1 + λ

)
1{ξx−1=ξx+1=1}.

For ξ, ξ ′ ∈�L, we have

L−1∑
x=1

cos(x)
((

�ξ ′
)
x
− (�ξ)x

)=−
(

1 − cos

(
β

L

))L−1∑
x=1

cos(x)
(
ξ ′x − ξx

)
. (4.10)

Considering

Lξx − (�ξ)x = 1{ξx−1=ξx+1=0} +
(

1 − λ

1 + λ

)
1{ξx−1=ξx+1=1},

we see that both terms in the right-hand side are nonnegative and monotonically decreasing in ξ for λ ∈ (0,1]. Hence, if
ξ ≤ ξ ′, we know that

Lξx − (�ξ)x ≥ Lξ ′x −
(
�ξ ′

)
x
. (4.11)

For simplicity of notation, we set

γ = γL,β := 1 − cos(β/L).

On the grounds of Lemma 2.3, (4.10) and (4.11), if ξ ≤ ξ ′, we obtain

(L)
(
ξ ′
)− (L)(ξ)=

L−1∑
x=1

cos(x)
((

�ξ ′
)
x
− (�ξ)x +

(
Lξ ′x −

(
�ξ ′

)
x

)− (
Lξx − (�ξ)x

))

≤
L−1∑
x=1

cos(x)
(
(�ξ)′x − (�ξ)x

)
≤−γ

(

(
ξ ′
)−(ξ)

)
. (4.12)

Now we are ready to prove that T2 = tδ/2 with high probability.
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Lemma 4.4. For all ε > 0, all sufficiently small δ > 0 and 0 < η < δ/10, if L is sufficiently large, we have

P[T2 > tδ/2] ≤ ε.

Proof. By σ∧
t ≥ σ

μ
t and (4.12), we obtain

d

dt
E
[

(
σ∧

t

)−
(
σ

μ
t

)]= E
[
(L)

(
σ∧

t

)− (L)
(
σ

μ
t

)]
≤−γE

[

(
σ∧

t

)−
(
σ

μ
t

)]
. (4.13)

Using (4.13), (σ∧
0 )≤ 1

2L2 and (ξ)≥ 0 for all ξ ∈�L, we obtain

E
[

(
σ∧

t

)−
(
σ

μ
t

)]≤ e−γ t
(

(
σ∧

0

)−
(
σ

μ
0

))≤ 1

2
L2e−γ t . (4.14)

Thus, applying Markov’s inequality, we achieve

P[T2 > tδ/2] = P
[
Atδ/2 > L

3
2−2η

]
≤ 1

2δmin
L2η+ 1

2 e−γ tδ/2 , (4.15)

where the last inequality uses (4.14) and the definition of At in (4.9). Recalling γ = 1−cos(β/L) and using the inequality
1 − cosx ≥ 1

2x2 − 1
24x4 for all x ≥ 0, we have

γ tδ/2 ≥ β2

2π2

(
1 + δ

2

)
logL− β4

24L2

(
1 + δ

2

)
logL.

For δ > 0 sufficiently small and 0 < η < δ/10, we choose

β = π

√√√√1 + 9
20δ

1 + δ
2

∈ (2π/3,π)

which satisfies

1

2

(
1 + δ

2

)
β2

π2
= 1

2
+ 9

40
δ >

1

2
+ 2η.

With this choice of β , the rightmost term of (4.15) vanishes as L tends to infinity. �

4.3. The estimation of 〈A.〉Ti
− 〈A.〉Ti−1

Due to Dynkin’s martingale formula, we know that

At −A0 −
∫ t

0
LAs ds

is a martingale. Moreover, we let 〈A.〉t represent the predictable bracket associated with this martingale. The objective of
this subsection is to show that 〈A.〉Ti

− 〈A.〉Ti−1 is small for all i ∈ �3,K�. For any i ∈ �3,K�, let

�i〈A〉 := 〈A.〉Ti
− 〈A.〉Ti−1 , (4.16)

and let

�∞〈A〉 := 〈A.〉T∞ − 〈A.〉TK
. (4.17)

We have LAs ≤ 0, according to (4.12), σ∧
t ≥ σ

μ
t , and the monotonicity of the function  stated in (4.6). Then, At is

a supermartingale for λ ∈ (0,1]. Its jump amplitudes in absolute value are bounded below by 1 for t < τ1 where the
absorption time τ1 is defined in (4.4). Moreover, for t < τ1 we can always find one flippable corner in σ∧

t and one in σ
μ
t
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Fig. 2. In this figure, σ∧
t consists of the red line segments and black thick line segments, while σ

μ
t consists of the blue line segments and black thick

line segments. Moreover, Bt = �a1, b1 � ∪ �a2, b2 �, #(Dt ∩ �a1, b1 �) = 3, and #(Dt ∩ �a2, b2 �) = 13. In �a2, b2 �, the monotone segments of σ
μ
t are

�a2, a2 + 1�, �a2 + 1, a2 + 3�, �a2 + 3, a2 + 5�, and so on as shown in the figure.

which can change the value of At , and the total rates of these two corners are at least 1. Therefore, the jump rates of At

are least 1 for t < τ1. We refer to Figure 2 for illustration: those flippable corners in σ
μ
t and σ∧

t which are not totally
colored black can change the value of At , and the total rates of these corners are at least 1. Now, we are in the setting to
apply [8, Proposition 29] which, under some condition, allows to control hitting times of supermartingales in terms of the
martingale bracket.

Proposition 4.5 (Proposition 29 in [8]). Let (Mt )t≥0 be a pure-jump supermartingale with bounded jump rates and jump
amplitudes, and M0 ≤ a almost surely. Let 〈M.〉, with an abuse of notation, denote the predictable bracket associated
with the martingale Mt = Mt − It where I is the compensator of M. Given b ∈R and b ≤ a, we set

τb := inf{t ≥ 0 : Mt ≤ b}.
If the amplitudes of the jumps of (Mt )t≥0 are bounded above by a − b, for any u≥ 0, we have

P
[〈M.〉τb

≥ (a − b)2u
]≤ 8u−1/2. (4.18)

Now we apply Proposition 4.5 to prove that the event

AL := {∀i ∈ �3,K�,�i〈A〉 ≤ L3−2(i−1)η+ 1
2 η
}∩ {�∞〈A〉 ≤L2}

has almost the full mass, which is the following lemma.

Lemma 4.6. We have

lim
L→∞P[AL] = 1. (4.19)

Proof. We just need to show that the probability of its complement A�
L is almost zero. We apply Proposition 4.5 to

(At+Ti−1)t≥0 with ai = L
3
2−(i−1)η and bi = L

3
2−iη. For every i ∈ �3,K�, we obtain

P
[
�i〈A〉 ≥

(
L

3
2−(i−1)η −L

3
2−iη

)2
ui

]≤ 8u
− 1

2
i , (4.20)

where we choose ui = L
1
2 η(1 −L−η)−2, satisfying(

L
3
2−(i−1)η −L

3
2−iη

)2
ui = L3−2(i−1)η+ 1

2 η.

We see that ui tends to infinity as L tends to infinity. Accordingly, the rightmost term in (4.20) vanishes as L tends to
infinity.

We apply Proposition 4.5 to (At+TK
)t≥0 with a∞ = L

3
2−Kη and b∞ = 0. We choose u∞ such that (a∞ − b∞)2u∞ =

L2, i.e.

u∞ = L−1+2Kη,
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which tends to infinity due to K = �1/(2η)� > 1/(2η). Thus P[�∞〈A〉 ≥ L2] tends to zero as L tends to infinity. Since
K is a constant, we have

lim
L→∞P

[
A�

L

]= 0. �

4.4. The comparison of Ti − Ti−1 to �i〈A〉

As explained in Section 4.3, we have ∂t 〈A.〉 ≥ 1 for all t < T∞. Therefore, we obtain

�∞〈A〉 =
∫ T∞

TK

∂t 〈A.〉dt ≥
∫ T∞

TK

1 dt = T∞ − TK.

Hence, when the event AL holds, we obtain

T∞ − TK ≤�∞〈A〉 ≤L2.

Now we control the intermediate increment Ti − Ti−1 for 3 ≤ i ≤K . To do that, we compare Ti − Ti−1 with 〈A.〉Ti
−

〈A.〉Ti−1 =�i〈A.〉. First, we give a lower bound on ∂t 〈A.〉, which is related with: (a) the maximal contribution among all
the coordinates x ∈ �0,L� in the definition of At ; and (b) the amount of flippable corners in σ

μ
t or σ∧

t that can change the
value of At . Considering the definition of At in (4.9), set

H(t) := max
x∈�0,L�

σ∧
t (x). (4.21)

For a lower bound on the quantity mentioned in (b), we need the maximal length of the monotone segment of σ
μ
t . For

ξ ∈�L, we define

Q1(ξ) := max
{
n≥ 1,∃i ∈ �0,L− n�,∀x ∈ �i + 1, i + n�, ξx − ξx−1 = 1

}
,

Q2(ξ) := max
{
n≥ 1,∃i ∈ �0,L− n�,∀x ∈ �i + 1, i + n�, ξx − ξx−1 =−1

}
,

and

Q(ξ) := max
(
Q1(ξ),Q2(ξ)

)
. (4.22)

Using these two quantities H(t) and Q(σ
μ
t ), we obtain a lower bound for ∂t 〈A.〉, which is the following lemma.

Lemma 4.7. We have

∂t 〈A.〉 ≥ max

(
1,

λδminAt

3(1 + λ)H(t)Q(σ
μ
t )

)
. (4.23)

Proof. We observe that At displays a jump whenever either σ
μ
t or σ∧

t flips a corner. Note that by (4.9) and (4.7), any
jump amplitude in absolute value of A is at least 1. Since any flippable corner is flipped with rate at least

min

{
1

2
,

1

1 + λ
,

λ

1 + λ

}
= λ

1 + λ
,

we obtain

∂t 〈A.〉t ≥ λ

1 + λ
#
{
x ∈ Bt :�σ

μ
t (x) 	= 0

}
,

where Bt := {x ∈ �1,L − 1� : ∃y ∈ �x − 1, x + 1�, σ∧
t (y) 	= σ

μ
t (y)}. For simplicity of notation, set Dt := {x ∈ Bt :

�σ
μ
t (x) 	= 0}. Let �a, b� denote the horizontal coordinates of a maximal connected component of Bt , for which we refer

to Figure 2 for illustration. Since σ
μ
t can not be monotone in the entire domain �a, b�, we know that

#
(
Dt ∩ �a, b�

)≥ 1.
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In Bt , we decompose the path associated with σ
μ
t into consecutive maximal monotone segments. Then we know that

in Bt every two consecutive components correspond to one flippable corner, which is a point in Dt . As any maximal
monotone component is at most of length Q(σ

μ
t ) defined in (4.22), we obtain

#
(
Dt ∩ �a, b�

)≥ 1

2

⌊
b − a

Q(σ
μ
t )

⌋
≥ 1

3

b − a

Q(σ
μ
t )

. (4.24)

In addition, we observe that

b∑
x=a

(σ∧
t (x)− σ

μ
t (x)) cos(x)

δmin
≤ (b − a)

H(t)

δmin
, (4.25)

where H(t) is defined in (4.21). Summing up all such intervals �a, b� and using (4.24) and (4.25), we obtain

At ≤ 3

δmin
H(t)Q

(
σ

μ
t

)
#Dt .

Therefore, we have

∂t 〈A.〉 ≥ λ

1 + λ
#Dt ≥ λδmin

3(1 + λ)

At

H(t)Q(σ
μ
t )

.

This yields the desired result. �

To give a good lower bound for ∂t 〈A.〉, we need to control Q(σ
μ
t ) and H(t). Our next step is to give an upper bound

on Q(σ
μ
t ), which is the following lemma. We recall the notation

tδ = (1 + δ)
1

π2
L2 logL.

Lemma 4.8. We have

lim
L→∞P

[∃t ∈ [0, tδ] :Q
(
σ

μ
t

)
> (logL)2]= 0. (4.26)

Proof. Firstly, we prove that there exists a constant C(λ) > 0 such that for all L≥ 2

μ
(
Q(ξ) > (logL)2)≤ 2C(λ)L5/22−(logL)2

. (4.27)

Since there are at most L starting positions for a monotone segment either monotonically increasing or decreasing, we
have

#
{
ξ ∈�L :Q(ξ) > (logL)2}≤ L21+L−(logL)2

.

Moreover, as λN (ξ) ≤ 1 for λ ∈ (0,1] and any ξ ∈�L, we obtain

μ
(
Q(ξ) > (logL)2)≤ C5(λ)

L21+L−(logL)2

2LL−3/2
= 2C5(λ)L5/22−(logL)2

, (4.28)

where we use the inequality ZL(λ) ≥ C5(λ)−12LL−3/2 for all L ≥ 2 and some C5(λ) > 0 by Theorem 2.2. Secondly,
since there are at most L corners in any path ξ ∈�L, we have

L−1∑
x=1

Rx(ξ)≤ L,

where Rx(ξ) is defined in (1.5). Therefore, for any subset A⊂�L and s ≥ 0,

P
[∀t ∈ [s, s +L−1] : σμ

t ∈A | σμ
s ∈A

]≥ e−1. (4.29)
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Taking A := {ξ ∈�L :Q(ξ) > (logL)2}, we define the occupation time to be

u(t) :=
∫ t

0
1A

(
σμ

s

)
ds. (4.30)

By Fubini’s Theorem, we obtain

E
[
u(2tδ)

]= 2tδμ(A). (4.31)

Using (4.29) and strong Markov property, we give a lower bound for E[u(2tδ)]:

E
[
u(2tδ)

]≥ e−1L−1
P
[∃t ∈ [0, tδ] : σμ

t ∈A
]
. (4.32)

By (4.31), (4.32) and (4.27), we have

P
[∃t ∈ [0, tδ] : σμ

t ∈A
]≤ 2eLtδμ(A)≤ 4eC5(λ)L7/2tδ2−(logL)2

, (4.33)

which vanishes as L tends to infinity. Therefore, we conclude the proof. �

The last ingredient for the proof of Proposition 4.3 is to control H(t), defined in (4.21). Recall that tδ = (1 +
δ) 1

π2 L2 logL.

Lemma 4.9. We have

lim
L→∞ sup

t∈[tδ/2,tδ]
P
[
H(t)≥ 2L

1
2 (logL)2]= 0. (4.34)

Intuitively, for λ ∈ (0,2), ( ξ[xL]√
L

)x∈[0,1] under μλ
L converges to Brownian excursion. (A rough argument for the intuition

goes as follows. By Equation (3.8), we have

μλ
L

(∃x ∈ �L1/3,L−L1/3 � : ξx = 0
)≤ 2c(λ)

L/2∑
x=L1/3

L3/2

x3/2(L− x)3/2
≤ c′(λ)L−1/6.

For ξ ∈�L, define

L(ξ) := sup{x ≤ L/2 : ξx = 0},
R(ξ) := inf{x ≥ L/2 : ξx = 0},

and we observe that

μλ
L(·|L = �,R = r)= μλ

� ⊗ P
(
·∣∣ min

1≤i<r−�
Si > 0;Sr−� = 0

)
⊗μλ

L−r ,

where P denotes the law of the symmetric nearest-neighbor simple random walk on Z. As (
S[x(r−�)]√

r−�
)x∈[0,1] under the law

P(·|min1≤i<r−� Si > 0;Sr−� = 0) converges to the Brownian excursion, we conclude the proof.) Therefore, the dynamics
(σ∧

t )t≥0 is like the simple exclusion process, and we can apply [10, Theorem 2.4] to obtain Lemma 4.9. We postpone the
proof in Appendix A. Now, we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. We define the event HL where the highest point of σ∧
t is not too high and there are a lot of

flippable corners in σ
μ
t during the time interval [tδ/2, tδ/2 +L2],

HL =
{∫ tδ/2+L2

tδ/2

1{H(t)≤2L
1
2 (logL)2}∩{Q(σ

μ
t )≤(logL)2} dt ≥ L2(1 − 2−(K+1)

)}
.
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First, we show that HL holds with high probability. We have

P
[
H�

L

]= P

[∫ tδ/2+L2

tδ/2

1{H(t)>2L
1
2 (logL)2}∪{Q(σ

μ
t )>(logL)2} dt ≥L22−(K+1)

]

≤ P

[∫ tδ/2+L2

tδ/2

1{H(t)>2L
1
2 (logL)2} dt ≥ L22−(K+2)

]

+ P

[∫ tδ/2+L2

tδ/2

1{Q(σ
μ
t )>(logL)2} dt ≥ L22−(K+2)

]
, (4.35)

which vanishes as L tends to infinity, grounded on Markov’s inequality, Lemma 4.8, Lemma 4.9 and the fact that K is a
constant.

From now on, we assume the event AL ∩HL ∩ {T2 = tδ/2}. Based on (4.35), Lemma 4.6 and Lemma 4.8, we have

lim
L→∞P

[
AL ∩HL ∩ {T2 = tδ/2}

]= 1.

By induction, we show that �Tj = Tj −Tj−1 ≤ 2−jL2 for all j ∈ �3,K�. We argue by contradiction: let i0 be the smallest
integer satisfying

�Ti0 > 2−i0L2.

We know that

�i0〈A〉 ≥
∫ Ti0−1+2−i0 L2

Ti0−1

∂t 〈A.〉1{H(t)≤2L
1
2 (logL)2}∩{Q(σ

μ
t )≤(logL)2} dt. (4.36)

According to Lemmas 4.7, 4.8 and 4.9, we have a lower bound for ∂t 〈A.〉 when the indicator function equals to 1. That
bound is

∂t 〈A.〉 ≥ λδmin

3(1 + λ)

At

H(t)Q(σ
μ
t )

≥ λδmin

6(1 + λ)

At

L
1
2 (logL)4

. (4.37)

Since T2 = tδ/2 and �Tj = Tj − Tj−1 ≤ 2−jL2 for j < i0, we know that

Ti0−1 ≤ tδ/2 +L2
i0−1∑
j=3

2−j ≤ tδ/2 +
(
1 − 2−(i0−1)

)
L2,

and then Ti0−1 + 2−i0L2 ≤ tδ/2 +L2. Moreover, when the assumption HL holds, the indicator function

1{H(t)≤2L
1
2 (logL)2}∩{Q(σ

μ
t )≤(logL)2}

is equal to 1 on a set, which is of Lebesgue measure at least(
2−i0 − 2−(K+1)

)
L2 ≥ 2−(K+1)L2. (4.38)

Combining (4.36), (4.37) and (4.38), we obtain

�i0〈A〉 ≥ 2−(K+1)L2 λδmin

6(1 + λ)

At

L
1
2 (logL)4

≥ 2−(K+1) λδmin

6(1 + λ)
L3−i0η(logL)−4, (4.39)

where the last inequality uses the fact that At > L
3
2−i0η, for t < Ti0 . In addition, since we are in AL, we know that

�i0〈A〉 ≤ L3−2(i0−1)η+ 1
2 η. (4.40)

However, as i0 ≥ 3, we have

3 − 2(i0 − 1)η + 1

2
η < 3 − i0η.

Therefore, there is a contradiction between (4.39) and (4.40), as long as L is large enough. �
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5. Upper bound on the mixing time of the dynamics starting from the extremal paths for λ ∈ (1,2)

For the pinning model without positive constraint (see [2, Section 1]), the critical value is λc = 1, while the critical
value is λc = 2 for the pinning model with positive constraint. Due to the repulsion effect of the impenetrable wall, the
process (At )t≥0 defined in Section 4.3 is not a surpermartingale for λ ∈ (1,2). But there is still monotonicity in the
dynamics starting with the maximal (or minimal) path for λ ∈ (1,2), which can be exploited to provide an upper bound
on the mixing time by applying the censoring inequality in [14, Theorem 1.1]. This inequality says that canceling some
prescribed updates slows down the mixing of the Glauber dynamics starting from the maximal (or minimal) configuration
of a monotone spin system.

Let us state the setting for applying the censoring inequality. A censoring scheme is a càdlàg function defined by

C : R+ → P(�),

where � is defined in (2.1) and P(�) is the set of all subsets of �. The censored dynamics with a censoring scheme
C is the dynamics obtained from the graphical construction in Section 2.1, except that the update at time t is canceled
if and only if it is an element of C(t). In other words, we construct the dynamics by using the graphical construction in
Section 2.1 with one extra rule: if T ↑

(x,z)
or T ↓

(x,z)
rings at time t , the update is performed if and only if (x, z) /∈ C(t). Let

(σ
ξ,C
t )t≥0 denote the trajectory of the censored dynamics with a censoring scheme C and starting from the path ξ ∈ �L,

and let P
ξ,C
t denote the law of distribution of the time marginal σ

ξ,C
t .

The Glauber dynamics of this polymer pinning model is a monotone spin system in the sense of [14, Section 1.1]
(detailed in Appendix B), and we refer to Figure 5 in Appendix B for a quick look. The following proposition follows
directly from [14, Theorem 1.1].

Proposition 5.1. For any prescribed censoring scheme C, for all λ ∈ [0,∞), all t ≥ 0 and ξ ∈ {∧,∨}, we have∥∥P ξ
t −μ

∥∥
TV ≤ ∥∥P ξ,C

t −μ
∥∥

TV. (5.1)

Besides Proposition 5.1, we need the two following results in the proof of the upper bound on the mixing time. Firstly,
by [12, Lemmas 20.5 and 20.11], we know that the asymptotic rate of convergence to equilibrium of this reversible
Markov chain is

lim
t→∞ t−1 logdL,λ(t)=−gapL,λ, (5.2)

where gapL,λ > 0 is the spectral gap defined in (1.12). By monotonicity of the Glauber dynamics and (4.3), for all λ > 0
we have

dL,λ(t)≤ P
(
σ∧

t 	= σ∨
t

)= P

(

(
σ∧

t

)−
(
σ∨

t

)≥ 2 sin

(
π

L

))
, (5.3)

where (ξ) is defined in (3.2). Moreover, for all λ > 0, by [2, Equation (4.1)] we have

E
[

(
σ∧

t

)]−E
[

(
σ∨

t

)]≤ L2

2
e−tκL .

Applying Markov’s inequality, we reclaim the useful result in [2].

Lemma 5.2. For all λ > 0, we have

dL,λ(t)≤ L2e−κLt

4 sin(π
L
)
. (5.4)

Plugging this into (5.2), we obtain

gapL,λ ≥ κL = 1 − cos

(
π

L

)
. (5.5)

Secondly, the following lemma is an application of the Cauchy–Schwarz inequality and the reversibility of the Markov
chain. For reference, we mention [1, Equation (2.6)].
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Lemma 5.3. For any probability distribution ν on �L, we have

‖νPt −μ‖TV ≤ 1

2
e−t ·gapL,λ

√
Varμ(ρ), (5.6)

where ρ := dν
dμ

and Varμ(ρ) := μ(ρ2)−μ(ρ)2.

We define

GL := {
(x,1) : x ∈ �2,L− 2� ∩ 2N

}
, (5.7)

where T ↑
(x,1) or T ↓

(x,1) rings, the update – in the graphical construction of Section 2.1 – changes the number of contact
points N , defined in (1.1). Moreover, GL corresponds to the centers of the green squares shown in Figure 5. Before we
start the proof of the upper bound on the mixing time for the dynamics starting with the maximal path ∧, we outline the
idea for Proposition 5.4 with λ ∈ (1,2).

(i) We elaborate a censoring scheme C, where C(t)=GL for t < tδ/2 and C(t)=∅ for t ≥ tδ/2. Therefore the dynamics

(σ
∧,C
t )0≤t<tδ/2 does not touch the x-axis except at the two coordinates x = 0,L.

(ii) By Remark 1 and Theorem 1.1, the distribution of σ
∧,C
tδ/2

is close to μ0
L in total variation distance.

(iii) As the Radon–Nikodym derivative of μ0
L with respect to μλ

L is bounded by a constant, we apply Lemma 5.3 and use
(5.5) to conclude the proof.

Proposition 5.4. For any λ ∈ (1,2), any ε > 0 and any δ > 0, if L is sufficiently large, we have

T
L,∧
mix (ε)≤ 1 + δ

π2
L2 logL. (5.8)

Proof. Recall that N is the number of contact points, defined in (1.1). We run the dynamics starting from the maximal
path ∧, censoring those updates which change the value of contact points N for t < tδ/2. More precisely, recalling
tδ = (1 + δ) 1

π2 L2 logL, we present a censoring scheme C : R+ → P(�), defined by

C(t) :=
{

GL if t ∈ [0, tδ/2),

∅ if t ∈ [tδ/2,∞).

We recall that σ
∧,C
t is the dynamics constructed by using the graphical construction with one extra rule: when the clock

process T ↑
(x,1) or T ↓

(x,1) rings for any x ∈ �1,L − 1� ∩ 2N and all t < tδ/2, we do not update. We refer to Figure 3 for
illustration. While t ≥ tδ/2, (σ

∧,C
t )t≥tδ/2 is constructed by the graphical construction in Section 2.1 without censoring.

Now we show that P
∧,C
tδ/2

is close to μ0
L. By Remark 1, applying Theorem 1.1, for all λ ∈ (1,2), all δ > 0 and all ε > 0,

if L is sufficiently large, we have∥∥P∧,C
tδ/2

−μ0
L

∥∥
TV ≤ ε/2. (5.9)

For any ξ ∈�L, define

ρ(ξ) := dμ0
L

dμλ
L

(ξ),

Fig. 3. A graphical representation of the jump rates for the dynamics σ
∧,C
t when t < tδ/2. Those red dashed corners are not available and labeled with

×, while the other corners are flippable with rate 1/2.
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and we want to show that ρ is bounded above uniformly for ξ ∈ �L. For any ξ ∈ �L \ �+
L – recalling �+

L = {ξ ∈ �L :
N (ξ)= 0}, since μ0

L(ξ)= 0,

ρ(ξ)= μ0
L(ξ)

μλ
L(ξ)

= 0.

While for any ξ ∈�+
L , applying Theorem 2.2, for all L≥ 4 we have

ρ(ξ)= dμ0
L

dμλ
L

(ξ)= μ0
L(ξ)

μλ
L(ξ)

= 1/ZL−2(1)

1/ZL(λ)
≤C5(λ),

where C5(λ) > 0 is a suitable constant and only depends on λ. By Lemma 5.3 and (5.5), for any given δ > 0, we have

lim
L→∞

∥∥μ0
LP δ

2 L2 logL −μλ
L

∥∥
TV = 0. (5.10)

At this moment, we are ready to show that P
∧,C
tδ

– the distribution of the censored dynamics at tδ – is close to the
stationary measure μλ

L. By the definition of C, we have∥∥P∧,C
tδ

−μλ
L

∥∥
TV = ∥∥P∧,C

tδ/2
Ptδ−tδ/2 −μλ

L

∥∥
TV

≤ ∥∥P∧,C
tδ/2

Ptδ−tδ/2 −μ0
LPtδ−tδ/2

∥∥
TV + ∥∥μ0

LPtδ−tδ/2 −μλ
L

∥∥
TV

≤ ∥∥P∧,C
tδ/2

−μ0
L

∥∥
TV + ∥∥μ0

LPtδ−tδ/2 −μλ
L

∥∥
TV. (5.11)

Here the first inequality uses the triangle inequality. The second inequality is based on the fact that ‖αPt − βPt‖TV ≤
‖α − β‖TV for any two probability measures α, β on �L, and Pt is a transition matrix on �L. The first term in (5.11) is
not bigger than ε/2 by (5.9) for L sufficiently large. The second term in (5.11) is smaller than or equal to ε/2 by (5.10)
for L sufficiently large.

Recall that P∧
t is the distribution of σ∧

t without censoring. By Proposition 5.1, for any t ≥ 0, we have∥∥P∧
t −μλ

L

∥∥
TV ≤ ∥∥P∧,C

t −μλ
L

∥∥
TV. (5.12)

Combining (5.11) and (5.12), we conclude the proof. �

Our next task is to provide an upper bound on the mixing time for the dynamics starting from the minimal path.

Proposition 5.5. For any λ ∈ (1,2), any ε > 0 and any δ > 0, if L is sufficiently large, we have

T
L,∨
mix (ε)≤ 1 + δ

π2
L2 logL. (5.13)

The idea for the proof of Proposition 5.5 for λ ∈ (1,2) is similar to Proposition 5.4:

(i) We first show that under P∨
s0(L) with s0(L) := 10L16/9 logL which is the marginal distribution of σ∨

s0(L), with high
probability σ∨

s0(L) does not touch the x-axis in the interval �M,L−M� for some M sufficiently large.

(ii) For the time interval [s0(L), s0(L)+ tδ/2), let (σ
∨,C
t )s0(L)≤t<s0(L)+tδ/2 denote the dynamics censoring those updates

which can change the number of contact points.
(iii) By Remark 1 and Theorem 1.1, roughly speaking, the distribution of σ

∨,C
s0(L)+tδ/2

is close to μ0
L in total variation

distance. Then we repeat the (iii) step stated above Proposition 5.4 to conclude the proof.

Lemma 5.6. For any given ε > 0 and λ ∈ (1,2), let M =M(λ, ε) be a positive integer, and

EL,M := {
ξ ∈�L : ξx ≥ 1,∀x ∈ �M,L−M�

}
. (5.14)

For all L≥ 2M , we have

P
[
σ∨

s0
∈ EL,M

]≥ 1 − ε/2. (5.15)
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Proof. Let m and n be two positive integers, and n < m < L/2. Observe that in the graphical construction, if we run the
dynamics (σ∨

t )t≥0 with the points (2n,0) and (2m,0) fixed for all t ≥ 0, denoted as (σ∨
t )t≥0 with σ∨

t (2n)≡ σ∨
t (2m)≡ 0

for all t ≥ 0, we have

∀t ≥ 0, σ∨
t ≤ σ∨

t . (5.16)

By symmetry, to give an upper bound on P[σ∨
t (x)= 0], we only need to consider x ∈ �0,L/2�. For all M ≤ x ≤ L/2 and

x ∈ 2N, let x̄ := 2�x8/9/2� and L̄ := 2�L8/9/2�. For all L sufficiently large, by (5.4) we obtain

T
L,λ
mix

(
L−3/2)≤ 18

π2
L2 logL. (5.17)

Therefore, the quantity s0 satisfies

T
L̄,λ
mix

(
L̄−3/2)≤ s0.

Using (5.16), (5.17) and (3.8) respectively, for all t ≥ s0, we take 2n := x − x and 2m := x + x in (5.16) to obtain

P
[
σ∨

t (x)= 0
]≤ P

[
σ∨

t (x)= 0
]

≤ μλ
2x̄ (ξx̄ = 0)+ ∥∥P∨

t −μλ
2x̄

∥∥
TV ≤C6(λ)x−4/3, (5.18)

where C6(λ) > 0 only depends on λ. In the second inequality, there is an abuse of notation – P∨
t denotes the distribution

of σ∨
t starting with the minimal path ∨ of �2x̄ . Therefore, due to symmetry and (5.18), we obtain

L−M∑
x=M

P
[
σ∨

s0
(x)= 0

]= 2
L/2∑
x=M

P
[
σ∨

s0
(x)= 0

]
≤ 2C7(λ)M−1/3. (5.19)

Let C(λ, ε) > 0 be a constant such that the right-hand side is smaller than ε/2, if M ≥ C(λ, ε). Applying Markov’s
inequality and (5.19), we obtain

P
[
σ∨

s0
/∈ EL,M

]= P

[
L−M∑
x=M

1{σ∨
s0

(x)=0} ≥ 1

]
≤ ε/2. (5.20)

�

For the dynamics starting from ξ ∈ EL,M , we censor the updates that change the number of the contact points until
time tδ/2. Then we show that its distribution at time t3δ/4 is close to μλ

L in total variation distance.

Lemma 5.7. Let ξ ∈ EL,M , and let (σ
ξ,C
t )t≥0 be a censored dynamics with the censoring scheme C : R+ →P(�) defined

by

C(t) :=
{

GL if t ∈ [0, tδ/2),

∅ if t ∈ [tδ/2,∞).

where GL is defined in (5.7). For any given ε > 0, for all L sufficiently large, we have∥∥P ξ,C
t3δ/4

−μλ
L

∥∥
TV < ε/2, (5.21)

where we recall that tδ = (1 + δ)π−2L2 logL and P
ξ,C
t denotes the marginal distribution of the censored dynamics

(σ
ξ,C
t )t≥0 at time t .

With Lemma 5.7 at hand, we are ready to prove Proposition 5.5. Combining Lemma 5.6, Lemma 5.7 and Proposi-
tion 5.1, we conclude the proof of Proposition 5.5, since s0 + t3δ/4 ≤ tδ .
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Fig. 4. A graphical representation of the jump rates for the censored dynamics (σ
ξ,C
t )0≤t<tδ/2 starting from ξ ∈ EL,M . The red dashed corners are not

available corners, labeled with ×. To the left hand side of the green point (M,0), the red point (�,0) is the first contact point with the x-axis at time
t = 0. Moreover, the corner at (�,0) is fixed for t ∈ [0, tδ/2). Likewise, the same phenomenon holds for the green point (L − M,0) and the red point

(r,0). In the time interval [0, tδ/2), the censored dynamics (σ
ξ,C
t )0≤t<tδ/2 does not touch the x-axis in the interval ��+ 1, r − 1�.

Proof of Lemma 5.7. For ξ ∈ EL,M , set

�(ξ) := sup{x ≤M : ξx = 0},
r(ξ) := inf{x ≥L−M : ξx = 0}. (5.22)

Observe that the censored dynamics (σ
ξ,C
t )0≤t<tδ/2 restricted in the intervals �0, ��, ��, r� and �r,L� respectively are inde-

pendent. Let the marginal distribution restricted in these three intervals be denoted by P
ξ,C
t,� , P

ξ,C
t,r−�, P

ξ,C
t,L−r respectively.

We refer to Figure 4 for illustration.
Let the censored dynamics restricted in the interval ��, r� be denoted by (̃σ

ξ
t )t<tδ/2 , whose invariant probability measure

is μ0
r−� defined in (1.2). By Theorem 1.1 and Remark 1, for given δ > 0 and ε > 0, for all L sufficiently large, we have∥∥P ξ,C

tδ/2,r−� −μ0
r−�

∥∥
TV ≤ ε/4. (5.23)

Note that the upper bound in (5.23) does not depend on the value of (�, r). Moreover, observe that for any ξ ′ ∈ �L, the
product distribution P

ξ,C
tδ/2,l

⊗μ0
r−� ⊗ P

ξ,C
tδ/2,L−r satisfies

(
P

ξ,C
tδ/2,�

⊗μ0
r−� ⊗ P

ξ,C
tδ/2,L−r

)(
ξ ′
)≤ 1

Zr−�(0)
, (5.24)

while μλ
L(ξ ′)≥ 1/ZL(λ) since λ ∈ (1,2). Therefore, for all L > 2M and for any ξ ′ ∈�L, we have

dP
ξ,C
tδ/2,�

⊗μ0
r−� ⊗ P

ξ,C
tδ/2,L−r

dμλ
L

(
ξ ′
)≤ C8(λ)22M, (5.25)

where the last inequality uses Theorem 2.2 and r − � ≥ L − 2M , since ξ ∈ EL,M . Note that the right-most hand side in

(5.25) does not depend on the value of (�, r), and the distribution of σ
ξ,C
tδ/2

is

P
ξ,C
tδ/2

= P
ξ,C
tδ/2,�

⊗ P
ξ,C
tδ/2,r−� ⊗ P

ξ,C
tδ/2,L−r , (5.26)

instead of P
ξ,C
tδ/2,�

⊗μ0
r−� ⊗ P

ξ,C
tδ/2,L−r . Due to (5.23), we repeat the same procedure in (5.11) to obtain∥∥P ξ,C

t3δ/4
−μλ

L

∥∥= ∥∥P ξ,C
tδ/2

Pt3δ/4−tδ/2 −μλ
L

∥∥
≤ ∥∥P ξ,C

tδ/2
Pt3δ/4−tδ/2 −

(
P

ξ,C
tδ/2,�

⊗μ0
r−� ⊗ P

ξ,C
tδ/2,L−r

)
Pt3δ/4−tδ/2

∥∥
+ ∥∥(P ξ,C

tδ/2,�
⊗μ0

r−� ⊗ P
ξ,C
tδ/2,L−r

)
Pt3δ/4−tδ/2 −μλ

L

∥∥. (5.27)

Moreover, we have∥∥P ξ,C
tδ/2

Pt3δ/4−tδ/2 −
(
P

ξ,C
tδ/2,�

⊗μ0
r−� ⊗ P

ξ,C
tδ/2,L−r

)
Pt3δ/4−tδ/2

∥∥
≤ ∥∥P ξ,C

tδ/2
− P

ξ,C
tδ/2,�

⊗μ0
r−� ⊗ P

ξ,C
tδ/2,L−r

∥∥= ∥∥P ξ,C
tδ/2,r−� −μ0

r−�

∥∥≤ ε/4, (5.28)
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where we have used (5.26) in the equality and (5.23) in the last inequality. While for the last term in (5.27), by (5.25) and
Lemma 5.3, for all L sufficiently large we have∥∥(P ξ,C

tδ/2,�
⊗μ0

r−� ⊗ P
ξ,C
tδ/2,L−r

)
Pt3δ/4−tδ/2 −μλ

L

∥∥≤ ε/4. (5.29)

Combining (5.28) with (5.29), we conclude the proof. �

Theorem 1.2 is a combination of Proposition 3.1, Proposition 5.4, and Proposition 5.5.

Appendix A: Proof of Lemma 4.9

We lift the maximal path ∧ up by a height L1/2(logL)2. To be precise, define ∧ := ∧ + m, i.e. ∧x = ∧x + m for all
x ∈ �0,L�, where m := 2�L1/2(logL)2/2�. The graphical construction in Section 2.1, with � changed to be

�′ := {
(x, z) : x ∈ �1,L− 1�, z ∈ �1,m+L/2 − 1 − |x −L/2|�, x + z ∈ 2N+ 1

}
,

allows us to couple the three dynamics (σ
∧,λ
t )t≥0, (σ

�,λ
t )t≥0 and (σ

�,0
t )t≥0, starting from ∧, � and � respectively, with

parameter λ, λ and 0 respectively. By the monotonicity of the starting paths and the parameters λ in the dynamics, asserted
in Proposition 2.1, we have

σ
∧,λ
t ≤ σ

∧,λ
t ,

σ
∧,λ
t ≤ σ

∧,0
t .

Set

H(t) := max
x∈�0,L�

σ
∧,0
t (x).

Since H(t)≥H(t), it is enough to prove that

lim
L→∞P

[∃t ∈ [tδ/2, tδ] :H(t)≥ 2L1/2(logL)2]= 0, (A.1)

where we recall that tδ = (1 + δ) 1
π2 L2 logL. We obtain such an upper bound in (A.1) by comparing (σ

∧,0
t )t≥0 with the

symmetric simple exclusion process.

A.1. Simple exclusion process

Define

SL := {
ζ ∈ Z

L+1 : ζ0 = ζL =m; |ξx+1 − ξx | = 1,∀x ∈ �0,L− 1�
}
, (A.2)

and

S+
L := {

ζ ∈ SL : ζx ≥ 1,∀x ∈ �0,L�
}
.

We define a Markov chain on SL by specifying its generator L. The generator L is defined by its action on the functions
R
SL ,

(Lf )(ζ ) := 1

2

L−1∑
x=1

(
f
(
ζ x
)− f (ζ )

)
, (A.3)

where ζ x ∈ SL is defined by

ζ x
y :=

{
ζy if y 	= x,

ζx−1 + ζx+1 − ζx if y = x.
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When ζx−1 = ζx+1, ζ displays a local extremum at x and we obtain ζ x by flipping the corner of ξ at the coordinate x.
Let UL denote the uniform probability measure on SL. We can see that this Markov chain is reversible with respect to the
uniform measure UL. Therefore, UL is the invariant probability measure for this Markov chain. The Markov chain starting
with the maximal path ∧ is denoted by (η∧t )t≥0. Likewise, let (η

UL
t )t≥0 denote the Markov chain with generator L and

starting path chosen by sampling UL. There is a one-one correspondence between this Markov chain and the symmetric
simple exclusion process, for which we refer to [10, Section 2.3] for more information. Under the measure UL, typical
path ζ ∈ SL does not touch the x-axis, which is the following lemma.

Lemma A.1. For all L sufficiently large, we have

UL

(
SL \ S+

L

)≤ e−
1
2 (logL)2

. (A.4)

Proof. Let P be the law of the nearest-neighbor symmetric simple random walk on Z, and (Si)i∈N be its trajectory with
S0 = 0. Since any trajectory of this simple random walk has the same mass, we have

UL

(
SL \ S+

L

)= P
[∃i ∈ �0,L� : Si +m≤ 0|SL = 0

]
≤L

1
2 P
[

min
i∈�0,L�

Si ≤−m,SL = 0
]

≤ 2L
1
2 P[SL ≤−m]

≤ e−
1
2 (logL)2

,

which vanishes as L tends to infinity. The first inequality uses P[SL = 0] ≥ L−1/2, for all L sufficiently large. The second
inequality uses

P
[

min
i∈�0,L�

Si ≤−m,SL = 0
]
≤ 2P[SL ≤−m].

In the last inequality, we use the inequality,
√

2πnn+ 1
2 e−n ≤ n! ≤ enn+ 1

2 e−n for all n≥ 1, to obtain

P[SL ≤−m] ≤ (L−m+ 1)

(
L

L+m
2

)
2−L ≤ (L−m+ 1)e−(logL)2

. �

A.2. Compare the polymer pinning dynamics to simple exclusion process

There is a graphical construction similar to that mentioned at the beginning of Appendix A, allowing to couple the three

dynamics (σ
∧,0
t )t≥0, (η∧t )t≥0 and (η

UL
t )t≥0 such that for all t ≥ 0,

σ
∧,0
t ≥ η∧t ≥ η

UL
t . (A.5)

Let P
∧,−
t (·) := P(η∧t = ·) and P

∧,0
t (·) := P(σ

∧,0
t = ·). Intuitively, the distribution of σ

∧,0
t is close to that of η∧t for all

t ≥ 0.

Lemma A.2. For any given ε > 0 and all L sufficiently large, we have

sup
0≤t≤tδ

∥∥P∧,0
t − P

∧,−
t

∥∥
TV ≤ ε. (A.6)

Proof. By Proposition 4.1 and the monotonicity in (A.5), we obtain

sup
0≤t≤tδ

∥∥P∧,0
t − P

∧,−
t

∥∥
TV ≤ P

[∃t ∈ [0, tδ] : σ�,0
t 	= η

�
t

]
≤ P

[
∃t ∈ [0, tδ] : min

x∈�0,L�
η∧t (x)≤ 0

]
≤ P

[
∃t ∈ [0, tδ] : min

x∈�0,L�
η

UL
t (x)≤ 0

]
. (A.7)
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The second inequality is based on the fact that in the coupling if σ
∧,0
t 	= η∧t , there must exist x ∈ �0,L� satisfying

η∧s (x)= 0 for some s ∈ [0, t]. The third inequality uses the monotonicity of the dynamics, i.e. η∧t ≥ η
UL
t for all t ≥ 0. The

last term in (A.7) vanishes as L tends to infinity, which follows exactly as that in (4.33) of Lemma 4.8, using occupation
time (4.30), strong Markov property and Lemma A.1. �

Furthermore, by [10, Theorem 2.4], for any given ε > 0 and t ≥ tδ/2, if L is sufficiently large, we have∥∥P∧,−
t −UL

∥∥
TV ≤ ε. (A.8)

Then we use the information of UL to give an upper bound for the highest point of σ
∧,0
t .

Proof of Lemma 4.9. By triangle inequality, Lemma A.2 and (A.8), for t ∈ [tδ/2, tδ], if L is sufficiently large, we have∥∥P∧,0
t −UL

∥∥
TV ≤ 2ε. (A.9)

By (A.9), for every t ∈ [tδ/2, tδ] and L sufficiently large, we obtain

P
[
H(t)≥ 2L

1
2 (logL)2]≤UL

(
sup

x∈�0,L�

ζx ≥ 2L
1
2 (logL)2, ζ ∈ SL

)
+ ∥∥P∧,0

t −UL

∥∥
TV ≤ 3ε,

where the first term in the right hand side vanishes as L tends to infinity, whose proof is the same as Lemma A.1. Since
ε > 0 is arbitrary, we finish the proof. �

Appendix B: Spin system

To deduce Proposition 5.1 from [14, Theorem 1.1], we construct a monotone system 〈�∗
L,S,VL,μ∗

L〉 which is the same
as the Glauber dynamics of the polymer pinning model.

For (x, z) ∈N
2, a square with four vertices {(x−1, z), (x+1, z), (x, z−1), (x, z+1)} is denoted as Sq(x, z). Recalling

� defined in (2.1), let S := {⊕,#} denote the spins, and VL := {Sq(x, z) : ∀(x, z) ∈ �} denote the set of all sites, which
consists of all green or white squares shown in Figure 5. Each square of VL is endowed with ⊕ or #. Moreover, we give
a natural order for the spins, say, #≤⊕. For any given ξ ∈�L, every square Sq(x, z) lying under the path ξ is endowed
with ⊕, while every square Sq(x, z) lying above ξ is endowed with #. This spin configuration is denoted as ξ∗. For
ξ, ξ ′ ∈�L, ξ ≤ ξ ′ if and only if ξ∗ ≤ ξ ′∗. Let �∗

L := {ξ∗, ξ ∈�L} and μ∗
L(ξ∗) := μ(ξ).

Fig. 5. An example shows the equivalence between the polymer pinning model and the spin system with L= 12. The blue path ξ is an element of �L .
This configuration in the spin system is denoted as ξ∗, and its probability measure is μ(ξ). The corner at x = 8 of thick blue path ξ flips up with rate
1/(1 + λ) to the dashed blue corner, while the spin # at the green square centered at (8,1) flips to ⊕ with rate 1/(1 + λ). The corner at x = 5 of thick
blue path ξ flips down with rate 1/2 to the dashed blue corner, while the spin ⊕ at the white square centered at (5,2) flips to # with rate 1/2. Note that
not all the correspondence between the flipping of the corners of ξ and that of the spins of ξ∗ are shown in the picture.
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For convenience of describing the Glauber dynamics of spin system, we introduce two fixed boundary conditions. We
assign a negative spin # to each square Sq(x, z) where{

(x, z) : x ∈ �1,L/2 − 1� ∪ �L/2 + 1,L− 1�, z = L/2 + 1 − |x −L/2|}.
These are the blue squares shown in Figure 5. In addition, we also introduce a positive boundary condition. A triangle
with three vertices {(x − 1, z), (x + 1, z), (x, z + 1)} is denoted as Tr(x, z) for (x, z) ∈ N

2. We assign a positive spin ⊕
to each triangle Tr(x,0) for all x ∈ �1,L− 1� \ 2N. These are the red triangles shown in Figure 5. We say that two spins
are neighbors if the squares or triangles on which they lie share an edge. We use the same exponential clocks and uniform
coins T ↑, T ↓, U↑, and U↓ define in Section 2.1 to describe the dynamics of the spin system.

Given T ↑, T ↓, U↑ and U↓, we construct, in a deterministic way, (σ
ξ∗
t )t≥0 the Glauber dynamics of the spin system

starting with ξ∗ with parameter λ. The trajectory (σ
ξ∗
t )t≥0 is càdlàg with σ

ξ∗
0 = ξ∗ and is constant in the intervals, where

the clock processes are silent.
When the clock process T ↑

(x,z) rings at time t = T ↑
(x,z)(n) for n≥ 1, we update the configuration σ

ξ∗
t− as follows:

• if the spin in the square Sq(x, z) is #, and has two neighbors with ⊕ spins, and z = 1, and U↑
(x,z)

(n)≤ 1
1+λ

, we let the
spin in the square Sq(x, z) change to ⊕ at time t , and the other spins remain unchanged;

• if the spin in the square Sq(x, z) is #, and has two neighbors with ⊕ spins, and z ≥ 2, and U↑
(x,z)(n)≤ 1/2, we let the

spin in the square Sq(x, z) change to ⊕.

If these two conditions aforementioned are not satisfied, we do nothing.
When the clock process T ↓

(x,z) rings at time t = T ↓
(x,z)(n) for n≥ 1, we update the configuration σ

ξ∗
t− as follows:

• if the spin in the square Sq(x, z) is ⊕, and has two neighbors with # spins, and z = 1, and U↓
(x,z)(n)≤ λ

1+λ
, we let the

spin in the square Sq(x, z) change to # at time t , and the other spins remain unchanged;
• if the spin in the square Sq(x, z) is ⊕, and has two neighbors with # spins, and z ≥ 2, and U↓

(x,z)(n)≤ 1/2, we let the
spin in the square Sq(x, z) change to # at time t , and the other spins remain unchanged.

If these two conditions aforementioned are not satisfied, we do nothing.
We can see that 〈�∗, S,V ,μ∗〉 is a monotone system in the sense of [14, Section 1.1], whose Glauber dynamics is the

same as that of the polymer pinning model.
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