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We consider the simple exclusion process in the integer segment �1,N �
with k ≤ N/2 particles and spatially inhomogenous jumping rates. A particle
at site x ∈ �1,N � jumps to site x −1 (if x ≥ 2) at rate 1−ωx and to site x +1
(if x ≤ N − 1) at rate ωx if the target site is not occupied. The sequence ω =
(ωx)x∈Z is chosen by IID sampling from a probability law whose support is
bounded away from zero and one (in other words the random environment
satisfies the uniform ellipticity condition). We further assume E[logρ1] < 0
where ρ1 := (1−ω1)/ω1, which implies that our particles have a tendency to
move to the right. We prove that the mixing time of the exclusion process in
this setup grows like a power of N . More precisely, for the exclusion process
with Nβ+o(1) particles where β ∈ [0,1], we have in the large N asymptotic

Nmax(1, 1
λ
,β+ 1

2λ
)+o(1) ≤ t

N,k
mix ≤ NC+o(1),

where λ > 0 is such that E[ρλ
1 ] = 1 (λ = ∞ if the equation has no positive

root) and C is a constant, which depends on the distribution of ω. We conjec-
ture that our lower bound is sharp up to subpolynomial correction.

1. Introduction.

1.1. Overview. From the viewpoint of probability and statistical mechanics, the simple
exclusion process is one of the simplest interacting particle systems. It is a reasonable toy
model to describe the relaxation of a low density gas and we refer to [28], Chapter VIII.6, for
a historical introduction. Its relaxation to equilibrium has been the object of extensive study
under a variety of perspective: Hydrodynamic limits [21, 33, 34], Relaxation Time [6, 32]
log-Sobolev inequalites [40] and Mixing Time [3, 29] (the list of references is very far from
exhaustive).

All the above mentioned works are concerned with the exclusion in an homogeneous
medium and a small modification of this setup can lead to a drastic change of the pattern
of relaxation; see, for instance, [10, 11] (and references therein) for the phenomenology in-
duced by the change of the jump rate on a single bond. The disordered setup, where the jump
rate of the particles is random and varies in space fostered interest only more recently; see,
for instance, [7, 9, 35].

In the present paper, we are interested in the case of IID site disorder on a one-dimensional
segment, in particular, in the case where the local drift felt by particles has a nonconstant
sign. For the system to reach equilibrium, individual particles need to travel on macroscopic
distances and in particular have to fight against drift in some regions. This phenomenon, also
presents in the case of the random walk in a random environment (RWRE) [12, 19], induces
a slower mixing than in the constant nonzero bias case, as was proved in [35]. Our objective
is to quantify further this slowdown of the mixing time.

Received April 2022; revised November 2022.
MSC2020 subject classifications. Primary 60K37; secondary 60J27.
Key words and phrases. Interacting particle systems, random environment, Markov Chain mixing time.

388

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/23-AAP1967
http://www.imstat.org
mailto:lacoin@impa.br
mailto:shangjie.yang@biu.ac.il
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


ASEP IN RANDOM ENVIRONMENT 389

In order to estimate the mixing time of the disordered exclusion process, we need to under-
stand in detail how these regions with unfavorable drift—which we refer to as traps—affect
the pattern of relaxation to equilibrium. We make two important steps toward this objective:

• We prove that the mixing time grows at most like a power of N (the upper bound we prove
displays a nonoptimal exponent).

• We obtain a lower bound on the mixing time, which we conjecture to be optimal, and
which allows to identify, depending on the parameters of the system, which is the main
factor that slows down the mixing.

More precisely, our proof of the lower bound shows that the mixing time can be bounded
from below by three different mechanisms:

(i) Particles cannot move faster than ballistically, so that the mixing time is at least of
order N , which is the length of the system.

(ii) The particles may remain trapped in potential wells, which are created by the envi-
ronment, so that the mixing time is at least of order e�V where �V is the depth of the worst
potential well in the system (we refer to (13) for the definition of the potential and to (58) for
that of �V ).

(iii) The potential wells also limit the flow of particles through the system, which is at
most of order e−�V/2. For this last reason, the mixing time is at least of order ke�V/2 when
k is the number of particles in the system. We refer to Figure 7 for an intuitive argument.

While the first two limitations (i) and (ii) follow from early studies of one-dimensional
random walk in a random environment. More precisely, the introduction of the potential V is
due to Solomon [37], and the potential trap approach has been used to determine the limiting
behavior [19] and the mixing time [12] of the RWRE. The third limitation is specific to
systems with many particles, and to our knowledge, had not been identified so far. It creates
a third phase in the conjectured mixing time diagram (see Figure 4).

1.2. The exclusion process in a random environment. Let us introduce formally the ran-
dom process whose study is the object of this paper. The exclusion process on the segment
�1,N � with k particles and 1 ≤ k ≤ N/2 is a Markov process that can informally be described
as follows (we refer to Figure 1 for a graphical explanation):

(A) Each site is occupied by at most one particle (we refer to this constraint as the exclu-
sion rule). Therefore, at all times there are k occupied sites and N − k empty sites.

(B) Each of the k particles performs a random walk on the segment, independently of the
others, except that any jump that violates the exclusion rule is canceled.

More precisely, we want to consider the case of the exclusion process in a random envi-
ronment where the jump rates of the particles are specified by sampling an IID sequence of
random variables ω = (ωx)x∈Z, and the transition rates are given by

(1)

⎧⎪⎪⎨⎪⎪⎩
qω
N(x, x + 1) = ωx1{x≤N−1},

qω
N(x, x − 1) = (1 − ωx)1{x≥2},

qω
N(x, y) = 0 if y /∈ {x − 1, x + 1}.

The random walk with transitions qω
N , which corresponds to the case k = 1 is an extensively

studied process, usually referred to as Random Walk in a Random Environment (RWRE). The
RWRE on the full line Z was first studied by Solomon in [37] who established a criterion for
recurrence/transience. The limit law of the random walk in a random environment is studied
by Kesten et al. in [19] when the random walk is transient, and by Sinai in [36] when the
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FIG. 1. A graphical representation of the simple exclusion process in the segment �1,N � and environment
ω = (ωx)x∈Z: a bold circle represents a particle, and the number above every arrow represents the jump rate
while a red “×” represents a nonadmissible jump.

random walk is recurrent (we refer to [38, 41] for complete introductions to this research
field).

We are interested in the following quantitative question: How long does the system need
to relax to equilibrium, forgetting the information of its initial configuration in the sense of
total variation distance? More precisely, we are interested in the asymptotic in the limit when
k,N → ∞ of this total variation mixing time. This question has been extensively studied in
the case where the sequence ω = (ωx)x∈Z is constant, which we refer to as the homogeneous
environment case:

(1) When ωx ≡ 1
2 , Wilson in [39] showed that the system takes time of order N2 log min(k,

N − k). Later one of the authors of the present manuscript [24] proved that the lower bound
in [39] is sharp.

(2) When ωx ≡ p �= 1
2 , Benjamini et al. in [3] proved that the system takes time of order

N . In [22], Labbé and one of the authors provided the exact constant.
(3) The case ωx ≡ pN = 1

2 + εN with limN→∞ εN = 0 is studied by Levin and Peres in
[26] and also in [23].

From the results mentioned above, for homogeneous environments the system takes time
at least of order N and at most of order N2 logN to relax to equilibrium. However, when
the sequence ω = (ωx)x∈Z is chosen by independently sampling a nondegenerate common
law, the system can exhibit a very different behavior because the random environment can
create wells of potential, which trap particles (see equation (13) below for a definition of the
potential associated to ω).

Gantert and Kochler have studied the mixing time problem when k = 1 (and transient en-
vironment) in [12] for random environments and identified the mixing time, which is related
to the depth of the deepest trap and may be much larger than N2 logN . Schmid [35] studied
the question in the case of a positive density of particles, when the environment is ballistic
to the right, (i.e., when the random walk is transient with positive speed). More precisely,
he showed when ess infω1 = 1/2 (i.e., the local drift 2ωx − 1 is not bounded from below
uniformly away from zero), the order of magnitude of the mixing time is strictly larger than
N ; and when ess infω1 < 1/2 the mixing time is larger than N1+δ for some δ > 0, which
depends on P.

In our study, we focus on the case of random environments, which are such that the random
walk is transient (the case of recurrent environment is quite different and should be considered
separately). In that setup, the results in [35] leave several questions open, among which the
following ones:

(A) Is the mixing time always bounded from above by a power of N?
(B) If this is the case, for the exclusion process with kN = cNβ ≤ N/2 particles and β ∈

[0,1], can one identify an exponent ν = ν(P, β) > 0 (depending on β and the distribution),
which is such that the mixing time is of order Nν?

We provide a positive answer to question (A) by proving an upper bound on the mixing time,
which grows like a power of N . This upper bound is achieved by using a censoring procedure,
which allows to transport particles one by one to their equilibrium positions. Concerning
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question (B), we provide a new lower bound on the mixing time, which we believe to be
optimal and provide a conjecture concerning the value of ν. The bound is based on an analysis
of the effect that the deepest trap has on the flow of particles through the system. Significant
technical obstacles prevented us from obtaining a matching upper bound.

2. Model and result.

2.1. An introduction to random walk in a random environment ω. Let us recall the defini-
tion for random walk in a random environment. Given ω = (ωx)x∈Z, a sequence with values
in (0,1), the random walk in the environment ω is the continuous time Markov chain on Z

whose transition rates are given by

(2)

⎧⎪⎪⎨⎪⎪⎩
qω(x, x + 1) = ωx,

qω(x, x − 1) = 1 − ωx,

qω(x, y) = 0 if |x − y| �= 1.

We let (Xt)t≥0 denote the random walk in environment ω and initial condition 0 (we let Qω

denote the corresponding law). This process has been extensively studied in the case where
ω = (ωx)x∈Z is (the fixed realization of) a sequence of IID random variables (we will use P

and E to denote the associated law and expectation, respectively), and we refer to [38, 41] for
classical reviews.

Simple criteria have been derived on the distribution of ω as necessary and/or sufficient
conditions for recurrence/transience, ballisticity etc. Even though most of the results are valid
in a more general setup, for the sake of simplicity let us assume in the discussion that the
variables (ωx)x∈Z are bounded away from 0 and 1, that is, for some α ∈ (0,1/2) we have

(3) P
(
ω1 ∈ [α,1 − α]) = 1.

Setting ρx := (1 − ωx)/ωx , it has been proved in [37] that

(4)

{
E[logρ1] = 0 ⇒ Xt is recurrent under Qω , P-a.s.,

E[logρ1] �= 0 ⇒ Xt is transient under Qω , P-a.s.

More precisely in the second case we have with probability one limt→∞ Xt = ∞ (resp., −∞)
if E[logρ1] < 0 (resp., E[logρ1] > 0).

When transience holds, the rate at which Xt goes to infinity has also been identified in
[19]. It can be expressed in terms of a simple parameter of the distribution P of ω, yielding in
particular a necessary and sufficient condition for ballisticity. Let us assume that E[logρ1] <

0, and set

(5) λ = λP := inf
{
s > 0,E

[
ρs

1
] ≥ 1

} ∈ (0,∞].
It has been proved in [19] that if λ > 1 then

(6) lim
t→∞

Xt

t
= 1 −E[ρ1]

1 +E[ρ1] ,
and that if λ ∈ (0,1] then

(7) lim
t→∞

log(Xt)

log t
= λ.

2.2. The simple exclusion process in an environment ω.

2.2.1. Definition. Given a sequence ω = (ωx)x∈Z taking values in (0,1), N ≥ 2 and 1 ≤
k ≤ N − 1, the simple exclusion process in a random environment on the line segment �1,N �
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(we use the notation �a, b� := [a, b] ∩Z) with k particles is a Markov process on

(8) �N,k :=
{
ξ ∈ {0,1}N :

N∑
x=1

ξ(x) = k

}
.

The 1’s are denoting particles while 0’s correspond to empty sites. It can be informally de-
scribed as follows: each of the k particles performs independently a random walk with tran-
sitions given by qω in (2), with the constraints that particles must remain in the segment and
each site can be occupied by at most one particle. All transitions that would violate this con-
straint (i.e., a particle tries to jump either on sites 0, N + 1 or an already occupied site) are
canceled.

More formally, we let ξx,y be the configuration obtained by swapping the values of ξ at
sites x and y of the configuration ξ , defined by

(9) ∀z ∈ �1,N �, ξx,y(z) = ξ(z)1�1,N �\{x,y} + ξ(x)1{y} + ξ(y)1{x}.
The simple exclusion process in environment ω is the Markov process with transition rates
given by

rω(
ξ, ξx,x+1) :=

{
ωx if ξ(x) = 1 and ξ(x + 1) = 0,

1 − ωx+1 if ξ(x + 1) = 1 and ξ(x) = 0
for x ∈ �1,N − 1�,

rω(
ξ, ξ ′) := 0 in all other cases.

(10)

Equivalently, the generator of the process is defined for f : �N,k →R by

(11) Lω
N,k(f )(ξ) :=

N−1∑
x=1

rω(
ξ, ξx,x+1)[

f
(
ξx,x+1) − f (ξ)

]
.

Since ωx ∈ (0,1) for all x, the chain is ergodic and reversible. In order to give a simple
compact expression for the equilibrium measure, let us introduce the random potential V ω :
N →R defined as follows: V ω(1) := 0 and for x ≥ 2,

(12) V ω(x) :=
x∑

y=2

log
(

1 − ωy

ωy−1

)
.

With a small abuse of notation, we extend V ω to a function of �N,k . This extension is ob-
tained by summing the value of V ω among the positions of the particles in the configuration ξ :

(13) V ω(ξ) :=
N∑

x=1

V ω(x)ξ(x).

We consider the probability measure πω
N,k defined by

(14) πω
N,k(ξ) := 1

Zω
N,k

e−V ω(ξ) with Zω
N,k = ∑

ξ∈�N,k

e−V ω(ξ).

It is immediate to check by inspection that πω
N,k satisfies the detailed balance condition for

Lω
N,k , and thus that it is the unique invariant probability measure on �N,k .

If ξ ∈ �N,k , we let (σ
ξ
t )t≥0 denote the Markov chain with initial condition ξ . We provide in

Section 3.2 a construction (σ
ξ
t )t≥0 for all ξ ∈ �N,k on a common probability space. We use P

and E for the corresponding probability law and expectation, respectively. We let (Pt )t≥0 (the
dependence in ω, N , k is omitted in the notation to keep it light) denote the corresponding
Markov semigroup and set P

ξ
t := P(σ

ξ
t ∈ ·) = Pt(ξ, ·) to be the marginal distribution of

(σ
ξ
t )t≥0 at time t .



ASEP IN RANDOM ENVIRONMENT 393

2.2.2. Mixing time and spectral gap. In a standard fashion, we set the total variation-
distance to equilibrium at time t to be

(15) dω
N,k(t) := max

ξ∈�N,k

∥∥P ξ
t − πω

N,k

∥∥
TV,

where ‖ν1 − ν2‖TV := supA⊂�N,k
|ν1(A) − ν2(A)| denotes the total variation between two

probability measures ν1, ν2 on �N,k . Since the Markov chain is irreducible, we know that
(cf. [27], Theorem 4.9)

(16) lim
t→∞dω

N,k(t) = 0.

We are interested in quantitative aspects of the convergence (16). For this reason, we want to
evaluate the mixing time and spectral gap of the chain (see [27] for a motivated and thorough
introduction to these notions). For ε ∈ (0,1), the ε-mixing time of the chain is defined by

(17) t
N,k,ω
mix (ε) := inf

{
t ≥ 0 : dω

N,k(t) ≤ ε
}
.

By convention, we simply write t
N,k,ω
mix when ε = 1/4. The spectral gap of the chain gapω

N,k , in
our context, is the smallest nonzero eigenvalue of −Lω

N,k . Using reversibility and a spectral
decomposition, it can be shown (see, for instance, [27], Corollary 12.7) that gapω

N,k deter-
mines the asymptotic rate of convergence of dω

N,k , or more precisely

(18) lim
t→∞

1

t
logdω

N,k(t) = −gapω
N,k.

The mixing time and spectral gap are related to one another by the following relation valid
for ε ∈ (0,1/2) (cf. [27], Theorems 12.4 and 12.5):

(19)
1

gapω
N,k

log
(

1

2ε

)
≤ t

N,k,ω
mix (ε) ≤ 1

gapω
N,k

log
(

1

επmin

)
,

where

πmin = min
ξ∈�N,k

πω
N,k(ξ).

2.3. Results. The main object of the paper is the study of the exclusion process in an
IID environment. On the way to our main result, we also prove bounds on the mixing time,
which are valid for an arbitrary environment (ωx)x∈Z, which satisfies minimal assumptions.
We present these results first.

2.3.1. Universal bounds for the mixing time on the exclusion process. We assume with-
out loss of generality (by symmetry) that k ≤ N/2. We prove that the mixing time grows at
least linearly with the size of the system and at most exponentially. Both results are in a sense
optimal (see the discussion in Section 2.5. below).

PROPOSITION 2.1. Only assuming ω = (ωx)x∈Z ∈ (0,1)Z, for any k ∈ �1,N/2� and
N ≥ 2, we have

(20) t
N,k,ω
mix ≥ 1

16
N.

Furthermore, if kN is a sequence such that

(21) kN ≤ N/2 and lim
N→∞kN = ∞,

we have for any ε > 0, for N ≥ N0(ε) sufficiently large for any ω = (ωx)x∈Z ∈ (0,1)Z,

(22) t
N,kN ,ω
mix (1 − ε) ≥ 1

30
N.
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For the upper bound, we require an assumption similar to (3), that is,

(23) ∀x ∈ Z, ωx ∈ [α,1 − α].

PROPOSITION 2.2. Only assuming that the sequence (ωx)x∈Z satisfies (23), for all N ≥
2 and all k ∈ �1,N/2�, we have

(24) gapω
N,k ≥ αN−2|�N,k|−1

(
1 − α

α

)−N/2
,

and as a consequence for all ε ∈ (0,1/2),

(25) t
N,k,ω
mix (ε) ≤ α−1N2|�N,k|

(
1 − α

α

)N/2(
log |�N,k| + Nk log

1 − α

α
− log ε

)
.

2.3.2. Mixing time for the exclusion process in a random environment. Let us now intro-
duce our main results concerning the exclusion process in a random environment. We assume
that (3) holds, and that (recall (5))

(26) E[logρ1] < 0, λP < ∞ and 1 ≤ k ≤ N/2.

Using the various symmetries of the the system (between left and right, particles and empty
sites, etc.), the assumptions E[logρ1] < 0 and 1 ≤ k ≤ N/2 entail almost no-loss of general-
ity, the only case being left aside is a recurrent environment (i.e., E[logρ1] = 0). Assuming
that E[logρ1] < 0, the assumption λP < ∞ is equivalent to P[ω1 < 1/2] > 0. In particular,
it implies that the environment distribution is nontrivial. The case P[ω1 ≥ 1/2] = 1 has been
addressed in [35] and is discussed in the next section.

In order to get a better intuition on the result, let us provide a description of the equilibrium
measure. We introduce the event Ar ⊂ �N,k that the leftmost particle and rightmost empty
site are at a distance smaller than r of their respective maximal and minimal possible values:

(27) Ar := {
ξ ∈ �N,k : ∀x ∈ �1,N − k − r�, ξ(x) = 0; ∀x ≥ N − k + r, ξ(x) = 1

}
.

The following result tells us that the mass of πN,kN
is essentially concentrated at a finite

distance of the configuration ξmax with all k particles packed to the right (see (45)).

LEMMA 2.3. Under the assumptions (23) and (26), we have

(28) lim
r→∞ inf

N≥1
k∈�1,N/2�

E
[
πω

N,k(Ar )
] = 1.

Our first main result is that if the environment satisfies the assumptions (3) and (26), the
system relaxes to equilibrium in polynomial time. In other words, t

N,k,ω
mix grows like a power

of N with an explicit upper bound on the growth exponent. In order to describe our explicit
bound, we need to introduce the function F , which is the log-Laplace transform of logρ1,
that is,

(29) F(u) := logE
[
ρu

1
]
.

The assumption (3) ensures that F(u) < ∞ for every u ∈ R. As the log-Laplace transform
of a nontrivial random variable, F is a strictly convex function (as can be checked using
Hölder’s inequality). It satisfies F(0) = F(λ) = 0 (see Figure 2).

Since V ω is, up to a small modification, a sum of IID variables with the same distribution
as logρ1, the function F is used to compute the large deviations of V ω, and in particular to
determine the geometry of the deepest potential wells. Given a sequence of events (AN)N≥1,
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FIG. 2. A graphical description of the function F(u) with only two zeros at u = 0 and u = λ.

we say that AN holds with high probability (which we sometimes abbreviate as w.h.p.) if
limN→∞ P[AN ] = 1. Given a sequence (BN,k)N≥1,k∈�1,N/2�, we say that BN,k holds with
high probability if

lim
N→∞ inf

k∈�1,N/2�
P[BN,k] = 1.

We are now ready to state the result.

THEOREM 2.4. Under the assumptions (3) and (26), then with high probability we have

(30) t
N,k,ω
mix ≤ 80kNα−1

(
3u0 + 2

|F(u0)| logN

)4
N

3u0+2
|F(u0)| (2 log 1−α

α
+4 log 4−3 log 3)

,

where u0 is the point at which F attains its minimum.

Our second result provides a lower bound for the mixing time, which depends both on N

and k.

THEOREM 2.5. Under the assumptions (3) and (26), there exists a positive constant
c(α,P) such that w.h.p. we have

(31) t
N,k,ω
mix ≥ c max

{
N,N

1
λ (logN)−

2
λ , kN

1
2λ (logN)−2(1+ 1

λ
)}.

2.4. Comments on the uniform ellipticity assumption and possible extensions of our
method. As mentioned earlier, the assumption of uniform ellipticity of the environment (3)
has been taken to make our life simpler, and to make the some of the arguments easier to
expose. For instance, Proposition 2.2 which is used in the proof of Theorem 2.4 would need
to be replaced by a more intricate statement if one allows for ωx taking values in (0,1].
On the other hand, we believe that our results still hold provided if only (26) is satisfied.
This assumption in particular implies that E[ρu

1 ] is finite for some u > 0 but one may have
E[logρ1] = −∞. More precisely, if only (26) holds, one should have t

N,k,ω
mix ≤ NC for some

C depending on the distribution, and Theorem 2.5 should still holds.
The proof of Theorem 2.5 uses the ellipticity assumption only marginally, and generalizing

our proof does not present much difficulty (apart from the hassle of adapting the definition
of V ω in the case when the value 1 is allowed). Ellipticity plays a more substancial role in
the proof of Theorem 2.4. Since our approach is based on the hitting time of the maximal
configuration (see Section 6), one can use a comparison argument and assume that ω takes
value in [α,1] and consider ω̃ := (ωx ∧ (1 − γ ))n∈Z (we have E[log ρ̃1] ∈ (−∞,0) if γ

is taken sufficiently small). The potential V ω̃ then behaves, up to a small correction, like a
random walk with negative drift, whose increments are in L1 and whose tail distribution at
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+∞ are subexponential (this last point comes from λP < ∞). This is sufficient to ensure that
Proposition 3.4 holds for V ω̃, which is the essential point to make the proof work.

Finally, let us mention that the method presented below could in principle be adapted to
prove an estimate on the mixing time for the exclusion process in a Sinai type environment,
that is the case when E[logρ1] = 0 and E[(logρ1)

2] < ∞. In that case, we expect that the
mixing time of the simple exclusion process in such random environment satisfies w.h.p.,

(32) exp
(
c(α,P)

√
N

) ≤ t
N,k,ω
mix ≤ exp

(
C(α,P)

√
N

)
.

This is due to the fact that in that case, the potential’s scaling limit is given by a Brownian
motion and the deepest potential trap is of order

√
N . The two bounds in (32) can be obtained

by adapting the methods used to derive Theorem 2.4 and Theorem 2.5, respectively.

2.5. A short review of related results.

2.5.1. Mixing time for the exclusion process in a homogeneous environment. The mixing
time of the exclusion process on the line segment has been extensively studied in the case
where the sequence ω is constant, that is, ω ≡ p. In that case, not only the right order of
magnitude has been identified for the mixing time, but also the sharp asymptotic equivalent.
In the case of the exclusion with no bias, that is, p = 1/2 (the simple symmetric exclusion
process), it was shown in [1] that the mixing time for the exclusion process on the segment is
of order at least N2 and at most N2(logN)2. It was later established (see [39] for the lower
bound and [24] for the upper bound) that if kN satisfies (21), we have

(33) t
N,kN

mix (ε) = (1 + o(1))

π2 N2 log kN .

In the case where the walk presents a bias, that is, p �= 1/2, it was shown in [3] that the
mixing time is of order N . This result was refined in [22] by identifying the proportionality
constant, showing that if kN satisfies limN→∞ kN/N = θ , then

(34) t
N,kN

mix (ε) = [
1 + o(1)

](√θ + √
1 − θ)2

|2p − 1| N.

The case where p is allowed to depend on N was investigated in [23, 26] where the order of
magnitude and the sharp asymptotic of the mixing time were respectively determined. Note
that in (33) and (34) the asymptotic behavior of t

N,kN

mix (ε) does not display any dependence
on ε at first order. This implies that dN,kN

(t) abruptly drops from 1 to 0 on the time scale
N2 log kN and N , respectively. This phenomenon, called cutoff, is expected to hold for a
large class of Markov chains; we refer to [27], Chapter 18, for an introduction.

Let us also mention that the mixing time for the one-dimensional exclusion process has
also been investigated for a variety of different boundary conditions. We refer to [25] for
a sharp estimate of the convergence profile to equilibrium for the periodic boundary condi-
tion in the symmetric case and to [13] (and references therein) for the study of a variety of
boundary conditions, with or without bias. The case of higher dimension has also been con-
sidered (see, e.g., [29]) where the order of magnitude of the mixing time is determined up to
a constant.

2.5.2. Mixing time for the random walk in a random environment. In [12], the case of the
mixing time for a random walk in the segment with a transient random environment (which
corresponds to the case k = 1 in the present paper) was investigated. It is shown that whenever
λP > 1 then

(35) t
N,1,ω
mix (ε) = [

1 + o(1)
]
NE

[
Qω[

T ω
1

]]
,
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where T ω
1 is the first hitting time of 1 for the random walk in a random environment ω starting

from 0, Qω is the law of the random walk defined in (2) and E is the expectation w.r.t. the
environment (more precisely the result in [12], Theorem 1.6, concerns the lazy discrete time
random walk, and for this reason displays a factor 2). When λP < 1, it is shown that the
mixing time is of a much larger magnitude but cutoff does not hold (for a technical reason the
last statement about cutoff requires an additional nonlattice assumption on the distribution of
logρ1). More precisely, for λP ≤ 1 we have

(36) lim
N→∞

log t
N,1,ω
mix (ε)

logN
= 1

λP
.

The asymptotic N1/λP+o(1) corresponds to the time that is required to overcome the largest
potential barrier present in the system, whose height is of order (1/λ) logN .

2.5.3. Mixing time for the exclusion in a ballistic environment. In [35], the mixing time
t
N,kN ,ω
mix was investigated under the assumption that 0 < lim infkN/N ≤ lim sup kN/N < 1

and λP > 1. Three different cases are considered. The following results hold with high prob-
ability w.r.t. the environment law P:

• When ess infω1 > 1/2, it is shown that the mixing t
N,kN ,ω
mix is of order N , by a simple

comparison with the case of homogeneous asymmetric environment.
• When ess infω1 < 1/2, it is shown that there exists a positive δ such that the mixing time

satisfies t
N,kN ,ω
mix ≥ N1+δ .

• When ess infω1 = 1/2, it is shown that

(37) lim inf
N→∞ t

N,kN ,ω
mix (ε)/N = ∞ and t

N,kN ,ω
mix (ε) ≤ CN(logN)3,

together with a quantitative lower bound if P[ω1 = 1/2] > 0.

2.5.4. Other perspectives concerning the exclusion process and random environments.
The exclusion processes with other types of random environments have also been consid-
ered in the literature. One possibility is to consider a random environment on bonds instead
of sites. A particular choice, which makes the uniform measure on Z reversible for the ran-
dom walk, is the random conductance model. In that case, the mixing property of the system
strongly differs from the model considered here: the equilibrium measure is uniform on �N,k

so that there is no trapping by potential. It is expected that for a large class of environments
in that case the mixing properties are very similar to that of the homogeneous system. The
hydrodynamic limits of exclusion processes with bond-dependent random transition rates
have been studied in [7, 16] (see also [8] for a recent work going slightly beyond the random
conductance model).

The papers [5, 30] study the mixing properties of the simple exclusion process with k

particles on an arbitrary conductance network, that is, an arbitrary connected graph G =
(V ,E) with N vertices and bond dependent symmetric jump rates ω = (ωe)e∈E with ωe > 0
for all e ∈ E. In [5], it is shown that the spectral gap associated with the process is given by
that of the associated simple random walk, while in [30] the mixing time of the system is
compared to that of an individual particle, showing the existence of a universal constant C

such that for any k ∈ �1,N − 1�, G and ω,

t
N,k,ω
mix ≤ Ct

N,1,ω
mix logN.

Another corpus of work has been considering the (homogeneous) exclusion process itself as
a dynamical random environment, which determines the transition rates of the random walk.
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The asymptotic behavior of a random walker in this setup is studied in [14, 15], and the
hydrodynamic limit for the exclusion process as seen by this walker is studied in [2]. In a
more general setup for the jump rates of the walker, an invariance principle about the random
walk when the exclusion process starts from equilibrium is studied in [17].

2.6. Interpretation of our results and conjectures.

2.6.1. Comments on Propositions 2.1 and 2.2. The asymptotic for the mixing time for
ASEP in homogeneous environment (34) shows that the lower bound of Proposition 2.1 is
sharp up to a constant factor. A perhaps surprising observation is also that (22) is not true
without the assumption that kN goes to infinity, even if 1/30 is replaced by a smaller constant.
In fact given ε ≤ ε0, one can find N and ω such that t

N,1,ω
mix (1 − ε) ≤ Nε.

However, the constant in our bounds (20) and (22) are clearly not optimal. Let us state now
a natural conjecture. We believe that if limN→∞ kN/N = θ ∈ (0,1/2], and ωx ∈ [α,1 − α]
for all x ∈ Z (with the possibility of having α = 0) then the mixing time should be minimized
in the case where the environment is homogeneous and taking an extremal value, that is either
ω ≡ α or ω ≡ 1 − α. This is to say (cf. [22], Theorem 2)

(38) lim inf
N→∞

1

N
t
N,kN

mix (1 − ε) ≥ (
√

θ + √
1 − θ)2

1 − 2α
.

One can obtain counterexamples to (38) in the zero density case by considering the case
ωx = 1 − α in the first half of the segment �1,N � and ω = α in the second half of the
segment, and kN diverging to infinity such that limN→∞ kN/(logN) = 0. In that case, with
some minor efforts one can show that the mixing time is asymptotically equivalent N

2−4α
(which is half of the lower bound in (38)).

Proposition 2.2 can also be shown to be sharp within constant in the sense that there exists
a constant Cα , and for given N and k it is always possible to construct an environment ω such
that

(39) gapω
N,k ≥ e−CαN .

When only assuming (23), we conjecture that the best possible lower bound on the spectral
gap when limN→∞ kN/N = θ ∈ (0,1/2] is the following:

(40) lim inf
N→∞ inf

ω:�1,N � �→[α,1−α]
log gapω

N,kN

N
= −(1 − θ)

2
log

(
1 − α

α

)
.

This conjectured lim inf is reached asymptotically by the environment

(41) ωx = α1{x≤N/2} + (1 − α)1{x>N/2}.

Let us briefly justify this, and we point to Figure 3 for a graphical explanation. The system of
particles within �1, �N/2�� and �1 + �N/2�,N � mixes rapidly (see [22]). Using a decompo-
sition argument (see [18]), one can reduce the study of the mixing time to that of the reduced
chain, which only tracks the number of particles in each half of the segment (this is a birth
and death chain). The transition rate for that chain is rather explicit: a particle moves from
left to right with rate of order ( α

1−α
)N/2−a where a is the current number of particles on the

left half, while a particle moves from right to left with rate of order ( α
1−α

)N(1/2−θ)+a . At
equilibrium, one has θN/2 + O(1) particles sitting on the right and θN/2 + O(1) particles
on the left. The spectral gap of the above birth and death chain can be shown to be of order
( α

1−α
)N(1−θ)/2, which corresponds to the largest effective potential barrier encountered by

particles on their way to equilibrium.
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FIG. 3. When we have a ≥ θN/2 particles on the left, the rightmost of these particles has to overcome an
effective potential barrier of height �a := (N

2 − a) log 1−α
α . This barrier becomes higher when a approaches the

equilibrium value, which is θN/2.

2.6.2. Comments on Theorems 2.4 and 2.5. Our paper brings a complement to the results
in [35], in the case when ess infω1 < 1/2. First, it provides a complementary upper bound
result, which shows that the mixing time in transient environment always scales like a power
of N , even in the nonballistic case λP ≤ 1.

Second, it provides a more quantitative lower bound. In (31), the mixing time is bounded
from below by the maximum of three quantities. Each of them corresponds to a different
mechanism, which prevents the mixing time to be lower than a certain value.

• Mass transport cannot be faster than ballistic: What is exploited in Proposition 2.1 is that
particles cannot move faster than ballistically (and this is independent of the choice of ω),
so that the time required to transport the mass of particles to equilibrium has to be at least
of order N . This idea is already present in [3].

• Individual particles may be blocked by traps in the potential profile: As soon as ess infω1 <

1/2, the potential profile V ω is nonmonotone and will display energy barriers. It is known
since [19] that these energy barriers can slow down particles to subballistic speed when
λP ≤ 1 by creating traps that will require a long time to be crossed. This is the mechanism
that was used to identify the mixing time in case of a single particle in [12] (recall (36)),
and it corresponds to the time needed to cross the largest trap in the potential. This yields
the second term in (31).

• Potential barrier may also create bottleneck for the flow of particles: The third mecha-
nism, which was partially identified in [35], is that potential barrier also limits the flow
of particles throughout the system. The limitation on the flow does not correspond to the
inverse of the time that a particle needs to cross the trap, but rather to the square root of
this inverse. The reason for this is that when particles are flowing through the system, the
particle are “filling” half of the potential well, so that the remaining potential barrier to be
crossed is halved. This reasoning yields the third term in (31). We refer to Figure 7 for a
graphic illustration.

We believe that the three mechanisms described above are the only limiting factors to
mixing, and thus that the lower bound given in Theorem 2.5 is sharp as far as the exponent is
concerned. Let us formulate this as a conjecture. Let us assume that kN satisfies

lim
N→∞

logkN

logN
= β,
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FIG. 4. The phase diagram for the exponent of the mixing time (the lower bound is proved rigorously and
the upper bound is only conjectured). The transition between the blue and red (hatched) regions of the diagram
corresponds to the transition of the RWRE from the ballistic phase to the transient-with-zero-speed phase. A third
phase represented by the white region appears when one considers a large number of particles; in this phase, the
main limitation to mixing is the flow of particle through the deepest trap.

and then we should have the following convergence w.h.p.:

(42) lim
N→∞

log t
N,kN

mix

logN
= max

(
1,

1

λ
,

1

2λ
+ β

)
.

We refer to Figure 4 for the phase diagram concerning the conjectured exponent of the mixing
time.

In particular, this means that when β ≤ 1/(2λ) then the mixing time of the exclusion
process on the segment coincides (as far as the exponent is concerned) with that of the random
walk in the segment.

Since identifying the order of magnitude of the mixing time is a very challenging task,
proving cutoff type results for the process seems currently out of reach. However, the nature
of the mechanism that determines the mixing time presented in Figure 4 can allow to guess
whether cutoff should hold or not. When in the “ballistic regime” or in the “flow limitation
regime,” we believe that the system should display cutoff while in the ‘one particle limitation”
regime, no cutoff should hold. This is because in the latter case, the mixing time of the system
is determined by a single event, which takes a lot of time (namely, the time for the last particle
to exit the deepest potential trap in the system), while in the other cases, what leads to mixing
(either ballistic travel or flow of all the particles through a trap) can be decomposed into a
diverging number of small steps. This prediction is in line with what occurs in the case of a
single particle [12].

Organization. Section 3 is devoted to some technical preliminaries including the particle
description, equilibrium estimates, partial order, a graphical construction and a composed
censoring inequality.

Section 4 is devoted to universal lower and upper bounds on the mixing time for all random
environments, that is, the proofs of Propositions 2.1 and Proposition 2.2.

Section 5 is devoted to lower bounds on the mixing time, which is Theorem 2.5. There are
three bounds to prove: one of them is a consequence of Proposition 2.1, the other two are
presented as two distinct results (Proposition 5.1 and Proposition 5.2) and proved in separate
subsections. The first bound relies on controlling the displacement of the leftmost particle
while the other is based on a control of the particle flow.

Section 6 is concerned with the upper bound on the mixing time (Theorem 2.4). The proof
is based on an application of the censoring inequality and of our upper bound from Proposi-
tion 2.2: blocking the transitions along carefully chosen edges (in a way that varies through
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time) we guide all particles to the right of the segment (where they are typically located at
equilibrium) in polynomial time.

Comments on notation. We use c(α,P) and C(α,P) to stress that the constants c and C

depend on α and the law of the random environment ω.

3. Technical preliminaries.

3.1. Partial order on �N,k . Given ξ ∈ �N,k , we define ξ̄ : �1, k� → �1,N � as an increas-
ing function, which provides the positions of the particles of ξ from left to right:

(43)
{
ξ̄ (i) = x

} ⇐⇒
{
ξ(x) = 1 and

x∑
y=1

ξ(x) = i

}
.

We introduce a natural partial order relation “≤” on �N,k × �N,k as follows:

(44) (ξ ≤ η) ⇔ (∀i ∈ �1, k�, ξ̄ (i) ≤ η̄(i)
)
.

Informally, ξ ≤ η means that the particles in the configuration η are located “more to the
right” than those of ξ . Let ξmax and ξmin denote the maximal and minimal configurations of
(�N,k, “ ≤ ”), respectively, given by

(45) ξmax := 1{N−k+1≤x≤N} and ξmin := 1{1≤x≤k}.

This order plays a special role for our dynamic (σ
ξ
t )t≥0, and the next two subsections provide

tools to exploit this link.

3.2. Canonical coupling via graphical construction. Let us present a construction of a
grand coupling for the exclusion process on the segment �1,N �, which has the property of
conserving the order defined above.

To each site x ∈ �1,N �, we associate an independent rate 1 Poisson clock process
(T

(x)
i )i≥1 (the increments of the sequence (T

(x)
i )i≥1 are IID exponential variables of param-

eter 1) and an independent sequence of IID variables (U
(x)
i )i≥1 with uniform distribution on

[0,1]. These variables are independent of the environment ω = (ωx)x∈Z, and the trajectory
(σ

ξ
t )t≥0 for each ξ is a deterministic function of (T

(x)
i ,U

(x)
i )i≥1,x∈�1,N �. In the remainder of

the paper, P denotes the joint law of (T
(x)
i ,U

(x)
i )i≥1,x∈�1,N �, and E denotes the corresponding

expectation. Let us also introduce a natural filtration (Ft )t≥0 in this probability space setting

(46) i0(x, t) := max
{
i ≥ 1 : T (x)

i ≤ t
}

with the convention that max∅ = 0 and set

(47) Ft := σ
(
T

(x)
i ,U

(x)
i , x ∈ Z, i ≤ i0(x, t)

)
.

Now, given 1 ≤ k ≤ N − 1 and an initial configuration ξ ∈ �N,k , we construct the trajectory
(σ

ξ
t )t≥0 as follows:

(1) (σ
ξ
t )t≥0 is càdlàg and may change its value only at times T

(x)
i , x ∈ �1,N � and i ≥ 1.

(2) We construct the trajectory starting with σ
ξ
0 = ξ and modifying it sequentially at the up-

date times (T
(x)
i )i≥1,x∈�1,N �. For instance, if t = T

(x)
i we obtain σ

ξ
t from σ

ξ
t− as follows:

(A) If U
(x)
i ≤ ωx , x ≤ N − 1, σ

ξ
t−(x) = 1 and σ

ξ
t−(x + 1) = 0, then σ

ξ
t (x + 1) = 1 and

σ
ξ
t (x) = 0 (and σ

ξ
t (y) = σ

ξ
t−(y) for y /∈ {x, x + 1}).
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(B) If U
(x)
i > ωx , x ≥ 2, σ

ξ
t−(x) = 1 and σ

ξ
t−(x − 1) = 0, then σ

ξ
t (x − 1) = 1 and

σ
ξ
t (x) = 0 (and σ

ξ
t (y) = σ

ξ
t−(y) for y /∈ {x − 1, x}).

(C) In all other cases, σ
ξ
t = σ

ξ
t− .

It is elementary to check by inspection that the above construction results indeed in the
Markov chain with generator Lω

N,k . Note also that our process is adapted and Markov with
respect to the filtration (Ft )t≥0. In the same manner, the reader can check that it preserves
the order in the following sense.

PROPOSITION 3.1. For the coupling constructed above, we have for all ξ, ξ ′ ∈ �N,k ,

(48) ξ ≤ ξ ′ ⇒ P
[∀t ≥ 0, σ

ξ
t ≤ σ

ξ ′
t

] = 1.

3.3. Composed censoring inequality. We are going to use a variant of the censoring in-
equality introduced by Peres and Winkler [31]. Let EN = {{n,n + 1} : n ∈ �1,N − 1�} be the
set of edges in �1,N �, and a censoring scheme C : [0,∞) → P(EN) is a deterministic càdlàg
function where P(EN) is the set of all subsets of EN .

The censored chain (σ
ξ,C
t )t≥0 is a time inhomegenous Markov chain, with a generator

obtained by canceling the transitions using edges in C(t),

(49) LC,t
N,k(f )(ξ) :=

N−1∑
x=1

rω(
ξ, ξx,x+1)

1{{x,x+1}/∈C(t)}
[
f

(
ξx,x+1) − f (ξ)

]
,

where rω(ξ, ξx,x+1) is defined in (10). We let P C
t be the associated semigroup (the solution

of ∂tPt = PtLC,t
N,k with initial condition given by the identity). The censoring inequality [31],

Theorem 1, states that if one starts from an extremal initial condition, censoring delays the
mixing in the sense that (recall (45))

(50)
∥∥P C

t (ξmin, ·) − π
∥∥

TV ≤ ∥∥Pt(ξmin, ·) − π
∥∥

TV,

and furthermore, the result provides some additional information, namely that P C
t (ξmin, ·) is

stochastically dominated by Pt(ξmin, ·) (to see that the exclusion process fits the setup in [31],
one uses the height function representation, and the full details are provided in [24], Section
A.2), so that in particular,

(51) Pt(ξmin, ξmax) ≥ P C
t (ξmin, ξmax).

This yields the following consequence.

PROPOSITION 3.2. For any ξ ∈ �N,k and any censoring scheme C, we have

(52) Pt(ξ, ξmax) ≥ P C
t (ξmin, ξmax).

PROOF. Proposition 3.1 implies that Pt(ξ, ξmax) ≥ Pt(ξmin, ξmax) and (51) allows to con-
clude. �

We consider modified censored dynamics, where on top of censoring, at fixed time, we
replace the current configuration by one, which is lower for the order ≥ by moving some
particles to the left. For the application we have in mind, we can consider that these re-
placements are performed deterministically (although the result would hold also for random
replacements).
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Let (si)
I
i=1 be an increasing time sequence tending to infinity and let (Qi)

I
i=1 be a sequence

of stochastic matrices on �N,k such that for all ξ in �N,k there exists ξ ′ (depending on ξ and
i) such that

(53)

⎧⎪⎪⎨⎪⎪⎩
ξ ′ ≤ ξ,

Qi

(
ξ, ξ ′) = 1,

Qi

(
ξ, ξ ′′) = 0 when ξ ′′ �= ξ ′.

The stochastic matrix Qi is simply a mapping between configurations, which sends ξ to a
lower configuration ξ ′ deterministically. We consider P̃t the semigroup defined by

(54)

⎧⎪⎪⎨⎪⎪⎩
P̃0 = Id,

∂t P̃t = P̃tLC,t if t /∈ {si}Ii=1,

P̃si = P̃(si )−Qi.

PROPOSITION 3.3. For any choice of (si)
I
i=1, (Qi)

I
i=1 and C, we have for all t ≥ 0,

(55) Pt(ξmin, ξmax) ≥ P̃t (ξmin, ξmax).

PROOF. In view of Proposition 3.2, it is sufficient to prove that

P C
t (ξmin, ξmax) ≥ P̃t (ξmin, ξmax).

We perform a graphical construction of two dynamics on the same probability space, us-
ing the same auxiliary variables (T

(x)
i ,U

(x)
i )i≥1,x∈�1,N � to construct both trajectories. The

two dynamics are (σ̃min
t )t≥0—with transition probability P̃t and initial condition ξmin—and

(σ
min,C
t )t≥0—the censored dynamics with the same initial condition. The construction is as

follows.
For (σ

min,C
t )t≥0, we use the procedure given in Section 3.2 as for (σ

ξ
t )t≥0 (for ξ = ξmin)

with the following added requirement for the transitions: {x, x +1} /∈ C(t) in the case (A) and
{x, x −1} /∈ C(t) in the case (B). For (σ̃min

t )t≥0, we use the same procedure as for (σ
min,C
t )t≥0

but with the addition of new deterministic jumps in the trajectories at times (si)i∈I . More
precisely, if t = si , σ̃min

t is determined from σ̃min
t− as the unique element of �N,k such that

(56) Qi

(
σ̃min

t− , σ̃min
t

) = 1.

We have by definition σ̃min
0 = σ

min,C
0 , and it can be checked by inspection that all the tran-

sitions are order preserving (this is a property of the graphical construction when t /∈ {si}Ii=1
and a consequence of (53) for the special values t ∈ {si}Ii=1). �

3.4. Equilibrium estimates. Recalling (29) let us define

(57) κ := F ′(λ) = E
[
ρλ

1 log(ρ1)
]
> 0,

and set

(58) �V ω,N
max = max

1≤x≤y≤N

(
V (y) − V (x)

)
.

The literature on the subject of random walks in a random environment contains very sharp
information concerning �V ω,N

max , and the length of the corresponding trap (see [12]). In par-
ticular, it is known under quite general assumptions that |�V ω,N

max − 1
λ

logN | displays random
fluctuations of order 1 and that the corresponding traps are of a length 1

λκ
logN at first order.
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For the sake of completeness, we include a short proof of the following nonoptimal result,
which is sufficient for our purpose. Set

(59) qN :=
⌈

3u0 + 2

|F(u0)| logN

⌉
,

where u0 is the point at which F attains its minimum.

PROPOSITION 3.4. For any fixed ε > 0, we have

(60) lim
N→∞P

[
−

(
1 + ε

λ

)
log logN ≤ �V ω,N

max − 1

λ
logN ≤ ε

λ
log logN

]
= 1.

Furthermore, we have

(61) lim
N→∞P

[
max

1≤x≤y≤N
y−x≥qN

(
V (y) − V (x)

) ≥ −3 logN
]
= 0.

In particular, with high probability w.r.t. the environment law P we have

∀x, y ∈ �1,N �,
{
V (y) − V (x) = �V ω,N

max
} ⇒ {

(y − x) ≤ qN

}
.

PROOF. At the cost of an additive constant on our bounds (which we omit in the proof
for readability), using our uniform ellipticity assumption we can replace V (y) − V (x) in the
definition of (58) by a sum of IID random variables, setting V̄ (1) = 0 and

(62)
y∑

z=x+1

logρz := V̄ (y) − V̄ (x).

By definition of λ, Mn = (
∏n

x=1(ρx)
λ)n≥1 is a martingale for the filtration Gn := σ(ωx, x ∈

�1, n�). Using the optional stopping theorem at TA := inf{n,Mn ≥ A} and using that

(63)

⎧⎪⎨⎪⎩A ≤ MTA
≤ A

(
1 − α

α

)λ

,

lim
n→∞Mn = 0,

we have for any A

(64)
1

A

(
α

1 − α

)λ

≤ P

[
max
n≥1

n∏
x=1

(ρx)
λ ≥ A

]
≤ 1

A
.

The bound above can be used to obtain the upper bound on �V ω,N
max via a union bound using

translation invariance

P

[
max

1≤x≤y≤N
V̄ (y) − V̄ (x) ≥ 1

λ
logN + ε

λ
log logN

]

≤
N∑

x=1

P

[
max
y≥x

V̄ (y) − V̄ (x) ≥ 1

λ
logN + ε

λ
log logN

]

≤ NP

[
max
n≥1

n∏
x=1

(ρx)
λ ≥ N(logN)ε

]
≤ (logN)−ε.

(65)

Before proving the corresponding lower bound, let us move to the proof of (61). Again using
translation invariance and union bound, it is sufficient to show that

(66) lim
N→∞NP

[
max
n≥qN

n∑
x=1

logρx ≥ −3 logN

]
= 0.
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We use Doob’s maximal inequality for the martingale e−nF(u0)
∏n

x=1(ρx)
u0 . Since F(u0) <

0, we have

P

[
max
n≥qN

n∏
x=1

(ρx)
u0 ≥ N−3u0

]

≤ P

[
max
n≥1

e−nF(u0)
n∏

x=1

(ρx)
u0 ≥ N−3u0e−qNF(u0)

]
≤ N3u0eqNF(u0) ≤ N−2.

(67)

This is sufficient to conclude the proof of (61). Note that as a consequence of (64) (lower
bound) and (67), we have for N sufficiently large

(68) P

[
max

1≤n≤qN

n∏
x=1

(ρx)
λ ≥ N(logN)−(1+ε)

]
≥ 1

2

(
α

1 − α

)λ

N−1(logN)1+ε.

As a consequence of independence, we have

P

[
∀(i, j) ∈ �1, �N/qN� − 1� × �1, qN � :

V̄ (iqN + j) − V̄ (iqN) ≤ logN − (1 + ε) log logN

λ

]

≤
(

1 − 1

2

(
α

1 − α

)λ

N−1(logN)(1+ε)

)�N/qN �−1
≤ e−c(logN)ε .

(69)

This yields the lower bound in (60). �

PROOF OF LEMMA 2.3. We use the same argument as in the proof of the rougher bound
[35], Lemma 4.1. We reproduce it here for the sake of completeness. For ξ ∈ �N,k , we define
the positions of its leftmost particle and rightmost empty site to be respectively

(70)
LN,k(ξ) := inf

{
x ∈ �1,N � : ξ(x) = 1

}
,

RN,k(ξ) := sup
{
x ∈ �1,N � : ξ(x) = 0

}
.

Then

πω
N,k

(
A�

r

) ≤ πω
N,k

(
LN,k(ξ) ≤ N − k − r

) + πω
N,k

(
RN,k(ξ) ≥ N − k + r

)
.

Let us bound the second term, and the first one can be treated in a symmetric manner. More-
over, we have

(71) πω
N,k

(
RN,k(ξ) ≥ N − k + r

) = ∑
x∈�1,N−k�

y∈�N−k+r,N �

πω
N,k(LN,k = x,RN,k = y).

Furthermore, we recall that ξx,y , defined in (9), denotes the configuration obtained by swap-
ping the values at sites x, y of the configuration ξ , and observe that the map ξ �→ ξx,y is
injective from {ξ ∈ �N,k : LN,k(ξ) = x,RN,k(ξ) = y} to �N,k . Then we have

πω
N,k(LN,k = x,RN,k = y) = ∑

{ξ :LN,k(ξ)=x,RN,k(ξ)=y}
πω

N,k

(
ξx,y)

eV ω(y)−V ω(x)

≤ eV ω(y)−V ω(x) ≤ 1 − α

α
eV̄ ω(y)−V̄ ω(x).

(72)
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Now by the law of large numbers applied to a sum of IID variables, we have

lim
r→∞ inf

N≥1
k∈�1,N/2�

P

[
∀(x, y) ∈ �1,N − k� × �N − k + r,N � :

V̄ ω(y) − V̄ ω(x) ≤ (y − x)E[logρ1]
2

]
= 1.

(73)

Moreover, since ∑
x∈�1,N−k�

y∈�N−k+r,N �

e
E[logρ1](y−x)

2 ≤ eE[logρ1]r/2

(1 − eE[logρ1]/2)2

we have

(74) lim
r→∞ inf

N≥1
k∈�1, N

2 �

P

[
πω

N,k

(
RN,k(ξ) ≥ N − k + r

) ≤ 1 − α

α

(
1 − e

E[logρ1]
2

)−2
e
E[logρ1]r

2

]
= 1,

which concludes the proof. �

4. Bounds for the mixing time with arbitrary environments.

4.1. Proof of Proposition 2.1. In this proof, we only assume that ωx ∈ (0,1) for all x ∈ Z.
We look at the variable

m(ξ) :=
N∑

x=1

xξ(x).

Note that m(ξ) ∈ [ k(k+1)
2 , k(2N−k+1)

2 ]. We assume that

πω
N,k

(
m(ξ) ≥ k(N + 1)

2

)
≥ 1/2

(the other case can be treated symmetrically). Now, since at all times, each particle jumps to
right with a rate which is at most one, starting from ξmin (we write σmin

t for σ
ξmin
t to lighten

the notation) we have

(75) E
[
m

(
σmin

t

)] ≤ k(k + 1)

2
+ kt.

As a consequence of Markov’s inequality, we have

(76)

P
[
m

(
σmin

t

) ≥ k(N + 1)

2

]
= P

[
m

(
σmin

t

) − k(k + 1)

2
≥ k(N − k)

2

]
≤ 2t

(N − k)
,

which is smaller than 1/4 if t ≤ N/16.
When the number of particles goes to infinity, we use the same kind of reasoning but

adding concentration estimates for m(ξ), under the equilibrium measure πω
N,k (which is de-

noted simply by π in this proof for readability). Let us prove that

(77) Varπ
[
m(ξ)

] ≤ N2k.

To this end, we introduce the filtration (Gi )
N
i=1 defined by Gi := σ(ξ(x), x ∈ �1, i�), and

consider the martingale

(78) Mi := Eπ

[
m(ξ)|Gi

]
,
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where Eπ [·|Gi] denotes the conditional expectation under π . We have by construction

(79) Varπ
[
m(ξ)

] =
N∑

i=1

Var(Mi − Mi−1).

Now, we are going to show that

(80) Var(Mi − Mi−1) ≤ π(ξi = 1)(N − i)2,

which implies (77). To prove (80), we are going to show that for any χ ∈ {0,1}i−1 with at
most k − 1 ones and at most N − k − 1 zeros, the quantity

(81) �i(χ) = Eπ

[
m(ξ)|ξ�1,i−1� = χ, ξ(i) = 0

] − Eπ

[
m(ξ)|ξ�1,i−1� = χ, ξ(i) = 1

]
satisfies

(82) 0 ≤ �i(χ) ≤ N − i.

Note that we have

(83) Eπ

[
m(ξ)|ξ�1,i−1� = χ

] =
i−1∑
x=1

xχ(x) + πω

�i,N �,k−∑i−1
x=1 χ(x)

(
N∑

x=i

xξ(x)

)
,

where if I is a segment on Z and k′ ≤ |I |, πω
I,k′ denotes the equilibrium measure for exclusion

process on I with k′ particles and environment ω. For this reason, it is sufficient to prove (81)
for i = 1, and arbitrary k (not necessarily assuming k ≤ N/2). Hence, we need to prove that
for N ≥ 1 and k ∈ �1,N − 1� we have

(84) 0 ≤ Eπ

[
m(ξ)|ξ(1) = 0

] − Eπ

[
m(ξ)|ξ(1) = 1

] ≤ N − 1.

To prove this, we observe that there exists a probability � on �2
N,k with marginals π(·|ξ(1) =

0) and π(·|ξ(1) = 1) such that

(85) �

(
N∑

x=1

1{ξ1(x) �=ξ2(x)} = 2

)
= 1

(meaning that ξ1(x) = ξ2(x) except at two sites, 1 and another random site). With this cou-
pling, we have

Eπ

[
m(ξ)|ξ(1) = 0

] − Eπ

[
m(ξ)|ξ(1) = 1

] = �

[
N∑

x=1

x
(
ξ1(x) − ξ2(x)

)]
,

which yields (84). The coupling � can be achieved using the graphical construction: we
define (ξ1

t )t≥0 and (ξ2
t )t≥0 starting with initial configuration 1�2,k+1� and 1�1,k�, respec-

tively, and evolving using the graphical construction with the edge {1,2} censored (recall
Section 3.3). The dynamic conserves the number of discrepancies and π(·|ξ(1) = 0) and
π(·|ξ(1) = 1) are the respective equilibrium distributions of the marginals, so that any limit
point of P[(ξ1

t , ξ2
t ) ∈ ·] (existence is ensured by compactness) provides a coupling satisfying

(85).
Now to see that (82) implies (80), we simply observe that, conditioned on the state of the

first i − 1 vertices of the segment, (Mi − Mi−1) can only assume two values which differ
by an amount �i(χ) (cf. (81)). The corresponding conditioned variance is equal to �i(χ)2

times that of the corresponding Bernoulli variable, that is,

Eπ

[
(Mi − Mi−1)

2|ξ�1,i−1� = χ
]

= π
(
ξ(i) = 1|ξ�1,i−1� = χ

)
π

(
ξ(i) = 0|ξ�1,i−1� = χ

)
�i(χ)2

≤ π
(
ξ(i) = 1|ξ�1,i−1� = χ

)
(N − i)2.

(86)
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Then we take the average with respect to ξ�1,i−1� in the above inequality to conclude. Now
using (77) we can assume that for any ε there exists N0(ε) such that for N ≥ N0(ε) we have

(87) min
[
πω

N,k

(
m(ξ) ≤ Nk/3

)
, πω

N,k

(
m(ξ) ≥ 2Nk/3

)] ≤ ε/2.

Let us assume that the first of these two terms is smaller (the other case is treated symmetri-
cally). To conclude, we must show that for t = N

30 we have

(88) P
(
m

(
σmin

t

)
> Nk/3

) ≤ ε/2.

To check this, we observe that

(89) m
(
σmin

t

) ≤ k(k + 1)

2
+Nt ,

where Nt is the total number of particle jumps to the right up to time t . Since each particle
jumps at most with rate one, we have for N sufficiently large

(90) P[Nt ≥ 2kt] ≤ ε/2,

which allows to conclude.

4.2. Proof of Proposition 2.2. For the proof of Proposition 2.2, we only assume (23)
and apply the so-called flow method (see [27], Chapter 13.4). A path � is a sequence of
configurations (ξ0, . . . , ξ|�|), which is such that rω(ξi−1, ξi) > 0 for i ∈ �1, |�|�. For any
given ordered pair (ξ, ξ ′) ∈ �N,k × �N,k , we assign a path �ξ,ξ ′ , whose starting point is ξ

and ending point is ξ ′.
Using [27], Corollary 13.21, the spectral gap of the chain can be controlled by a simple

quantity depending on the functional (ξ, ξ ′) �→ �ξ,ξ ′ . We say that an unordered pair e =
{ξ, ξ ′} ⊂ �N,k is an edge if q(e) := πω

N,k(ξ)rω(ξ, ξ ′) > 0 (note that by reversibility q(e) does
not depend on the orientation). We write e ∈ � = (ξ0, . . . , ξ|�|) if there exists i ∈ �1, |�|� such
that e = {ξi−1, ξi}. As the chain is reversible, we have then (the factor 1/2 is irrelevant but
appears because we are considering unoriented edges rather than oriented ones)

(91) gapω
N,k ≥

(
max

e

1

2q(e)

∑
(ξ,ξ ′)∈�Nk×�N,k :e∈�ξ,ξ ′

πω
N,k(ξ)πω

N,k

(
ξ ′)|�ξ,ξ ′ |

)−1
.

In the proof, we describe a choice for �ξ,ξ ′ , which yields a relevant bound for the spectral
gap. Let us fix a state ξ∗ ∈ �N,k that has maximal probability, which is such that

(92) V ω(
ξ∗) = min

ξ∈�N,k

V ω(ξ)

(we make an arbitrary choice if there are several minimizers). Now to build the path �ξ,ξ ′ we
are going to build first a path from ξ to ξ∗ and then one from ξ∗ to ξ ′ and then concatenate
the two.

We can thus focus on the construction of �ξ,ξ∗ . Let

m := dH

(
ξ, ξ∗) := 1

2

N∑
x=1

∣∣ξ(x) − ξ∗(x)
∣∣

denote one-half of the Hamming distance between ξ and ξ∗. Our first step is to build a
sequence ξ (0), . . . , ξ (m), which reduces the Hamming distance in incremental steps, that is,
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such that

(93)

⎧⎪⎪⎨⎪⎪⎩
ξ (0) = ξ and ξ (m) = ξ∗,
dH

(
ξ (i−1), ξ (i)) = 1 for i ∈ �1,m�,

dH

(
ξ (i), ξ∗) = m − i for i ∈ �1,m�.

The choice we make for ξ (0), . . . , ξ (m) is not relevant for the result but let us fix one for the
sake of clarity. Let the sequences (xi)

m
i=1 and (yi)

m
i=1 be defined by

xi := min

{
x ∈ �1,N � :

N∑
x=1

(
ξ(x) − ξ∗(x)

)
+ = i

}
,

yi := min

{
y ∈ �1,N � :

N∑
y=1

(
ξ∗(y) − ξ(y)

)
+ = i

}
.

(94)

These sequences locate the discrepancies between ξ and ξ∗. Then we define ξ (i) inductively
as being obtained from ξ (i−1) by moving the particle at xi to yi , which is equivalent to setting

ξ (i) = ξ ∧ ξ∗ +
i∑

j=1

1{yj } +
m∑

j ′=i+1

1{xj ′ }.

Finally, our path from ξ to ξ∗ is defined by concatenating paths �(i), i ∈ �1,m�, linking
ξ (i−1) to ξ (i). We define �(i) = (ξ

(i)
0 , . . . , ξ

(i)
|xi−yi |) as a path of minimal length |xi −yi | linking

ξ
(i)
0 := ξ (i−1) to ξ

(i)
|xi−yi | = ξ (i). To define the intermediate steps, let us assume for notational

simplicity (and without loss of generality) that xi < yi . Moreover, let (zj )
b
j=1 be defined as

the decreasing sequence such that (we refer to Figure 5 for a graphical description)

ξ (i−1)|�xi ,yi � = 1{zj }bj=1
.

We then set dj := yi − zj if j ∈ �1, b� and d0 := 0, and define (ξ
(i)
� )

yi−xi

�=1 by setting if dj−1 <

� ≤ dj ,

(95) ξ
(i)
� := ξ (i−1) − 1{zj } + 1{zj+�−dj−1}.

In other words, we move the particle at site zj (j ≥ 1) to site zj−1 (with z0 = yi ) starting
from j = 1 until j = b.

FIG. 5. A bold circle represents a particle, and a particle at the same site for the configurations ξ(i−1) and ξ(i)

is colored black. Otherwise, it is red or blue. (L) A graphical description of the movements of the particle at site
xi of ξ(i−1) to the empty site yi and the numbers above the arrows are the relative order of the movements. (R)

We draw the graph of (�,V (ξ
(i)
� ))�.
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LEMMA 4.1. For the path collection (�ξ,ξ ′) constructed above, we have

B := max
e

1

2q(e)

∑
(ξ,ξ ′)∈�Nk×�N,k :e∈�ξ,ξ ′

πω
N,k(ξ)πω

N,k

(
ξ ′)|�ξ,ξ ′ |

≤ α−1N2|�N,k|
(

1 − α

α

)N/2
.

(96)

Let us now conclude the proof of Proposition 2.2. By (91) and Lemma 4.1, we have

(97) gapω
N,k ≥ αN−2|�N,k|−1

(
1 − α

α

)−N/2
.

Observe that

max
ξ,ξ ′∈�N,k

(
V ω(ξ) − V ω(

ξ ′)) ≤ Nk log
1 − α

α
,

and then

(98) min
ξ∈�N,k

πω
N,k(ξ) ≥ |�N,k|−1

(
1 − α

α

)−Nk

.

By (19), we have for ε ∈ (0,1/2),

(99) t
N,k,ω
mix (ε) ≤ α−1N2|�N,k|

(
1 − α

α

)N/2(
log |�N,k| + Nk log

1 − α

α
− log ε

)
.

PROOF OF LEMMA 4.1. A first observation is that by construction, our paths are of length
smaller than N2. Let e be an edge and (ξ, ξ ′) such that e ∈ �ξ,ξ ′ . By symmetry and taking
away the factor 1/2, we can always assume that e belongs to the first part of the path linking
ξ to ξ∗. After replacing |�ξ,ξ ′ | by the upper bound and summing over all ξ ′, we obtain that
the quantity we want to bound is exactly

(100)
1

2q(e)

∑
(ξ,ξ ′)∈�N,k×�N,k :e∈�ξ,ξ ′

πω
N,k(ξ)πω

N,k

(
ξ ′)|�ξ,ξ ′ | ≤ N2

∑
ξ∈�N,k :e∈�ξ,ξ∗

πω
N,k(ξ)

q(e)
.

Now let χ0(e, ξ) denote the first end of e, which is visited by the path going from ξ to ξ∗.
Now simply observing that q(e) is at least α times the smallest probability πω

N,k of its two
end points, we have

(101)
πω

N,k(ξ)

q(e)
≤ sup

ξ ′∈�ξ,ξ∗
α−1eV (ξ ′)−V (ξ).

Hence, using the bound in the sum in (100) we obtain that

(102) logB ≤ logα−1N2|�N,k| + sup
ξ∈�N,k

ξ ′∈�ξ,ξ∗

V
(
ξ ′) − V (ξ).

To conclude, we only need to prove that for every ξ ∈ �N,k and ξ ′ ∈ �ξ,ξ∗ we have

(103) V
(
ξ ′) − V (ξ) ≤ N

2
log

(
1 − α

α

)
.

This follows simply by inspection from the observations below. They are consequences of
the specific construction of the flow and of assumption (23).
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(i) In one step of �ξ,ξ∗ , V varies at most by log(1−α
α

) in absolute value.
(ii) Along the sequence (ξ (i))mi=1, V (ξ(i)) is nonincreasing. Indeed it follows from the

definition of ξ∗ that V (yi) ≤ V (xi).
(iii) Each concatenated path �(i) has a length smaller than N (hence each ξ

(i)
� is within

N/2 steps of either ξ (i) or ξ (i−1)) so that we have

max
0≤�≤|xi−yi |

(
V

(
ξ

(i)
�

) − V (ξ)
) ≤ max

0≤�≤|xi−yi |
(
V

(
ξ

(i)
�

) − V
(
ξ (i)) ∧ V

(
ξ (i−1)))

≤ N

2
log

1 − α

α
.

(104)

�

5. Lower bounds on the mixing time. Theorem 2.5 contains three separate lower
bounds. The first one is a consequence of Proposition 2.1. In this section, we are going
to prove the two remaining bounds, which are restated below as Propositions 5.1 and 5.2,
respectively. The proofs of these propositions rely on the two mechanisms exposed in Sec-
tion 2.6: The potential barrier created by rare fluctuations of V ω (cf. Proposition 3.4) has the
effect of trapping individual particles and slowing down the particle flow.

5.1. A lower bound from the position of the first particle.

PROPOSITION 5.1. Assuming (3), (26) and k ∈ �1,N/2�, we have with high probability
w.r.t. the environment law P,

(105) t
N,k,ω
mix ≥ [

N(logN)−2] 1
λ .

PROOF. As a consequence of Lemma 2.3, the probability of finding a particle in the first
quarter of the segment at equilibrium is small. That is, we have w.h.p. with respect to the
environment (recall the notation (43))

(106) πω
N,k

(
ξ̄ (1) ≤ N/4

) ≤ 1/4.

We are going to compare this probability to the one obtained for the the dynamic starting
with initial condition ξmin. Setting τz := inf{t ≥ 0 : σ̄min

t (1) = z} and using (106) we have for
all t ≥ 0,

(107) dω
N,k(t) ≥ P

[
σ̄min

t (1) ≤ N

4

]
− πω

N,k

(
ξ̄ (1) ≤ N/4

) ≥ 3/4 − P[τN/4 ≤ t].
In order to estimate the time required for the leftmost particle to reach site N/4, we iden-
tify the highest potential barrier in this part of the segment. We let x1 ≤ y1 be elements of
�1,N/4� such that (for all choices of x1 and y1 if there are several possibilities)

V ω(y1) − V ω(x1) = max
1≤x≤y≤N/4

(
V ω(y) − V ω(x)

)
.

We are going to show that for all t ≥ 0,

(108) P[τN/4 ≤ t] ≤ P[τy1 ≤ t] ≤ e(t + 1)eV (x1)−V (y1).

From (108) and (107), we deduce that

(109) t
N,k,ω
mix ≥ 1

2e
eV (y1)−V (x1) − 1,

and finally as a consequence of Proposition 3.4 (applied to the segment �1,N/4�), we have
w.h.p.,

V ω(y1) − V ω(x1) ≥ 1

λ
logN − 2

λ
log logN + log 20,
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which allows to conclude the proof. Let us now prove (108). Using the graphical construction
(with an enlargement of the probability space to sample the initial condition), we can couple
σmin

t with Xπ
t a random walk on the interval �1, y1� with transitions rates given by qω

y1
(cf.

(1)) and starting with an initial distribution sampled from the equilibrium measure πω
y1,1

, in
such a way that

∀t ≤ τy1, σ̄min
t (1) ≤ Xπ

t .

Setting τ̃y1 := inf{t ≥ 0 : Xπ
t = y1}, we then have for all t ≥ 0,

(110) P[τy1 ≤ t] ≤ P[τ̃y1 ≤ t].
We define the occupation time

u(t) :=
∫ t

0
1{y1}

(
Xπ

s

)
ds.

We have

E
[
u(t + 1)

] ≥ P
[
u(t + 1) ≥ 1

]
≥ P[τ̃y1 ≤ t]P[∀s ∈ [0,1] : Xπ

τ̃y1+s = y1
] ≥ e−1P[τ̃y1 ≤ t],(111)

where in the last inequality we use the strong Markov property. As the process (Xπ
t )t≥0 is

stationary,

E
[
u(t + 1)

] = (t + 1)πω
y1,1(y1) ≤ (t + 1)eV (y1)−V (x1),

which allows to conclude that

(112) P[τ̃1 ≤ t] ≤ e(t + 1)eV (y1)−V (x1). �

5.2. A lower bound derived from flow consideration. Let us now derive the third bound,
which is necessary to complete the proof of Theorem 2.5.

PROPOSITION 5.2. There exists a positive constant c = c(α,P) such that w.h.p. we have

(113) t
N,k
mix ≥ ckN

1
2λ (logN)−2(1+ 1

λ
).

To prove the above result, we adopt the strategy developed in [35], Proposition 4.2, by
investigating the flow of particles through a slow segment of size of order (logN) where the
drift of the random environment points to the left. This flow of particles is controlled via a
comparison with a boundary driven exclusion process.

In [35], the slow segment is selected to be such that ωx < 1/2 for every site in it. It has
the advantage of simplifying the computation since it allows for comparison with the homo-
geneous exclusion process for which computation has been performed in [4]. Our approach
brings an improvement by selecting the slow segment based on the potential function V ω.
The relevant quantity that limits the flow is the worst potential barrier that the particles have
to overcome. Proposition 3.4 allows to identify the worst potential barrier in the system. We
let N/2 ≤ x2(ω) ≤ y2(ω) ≤ 3N/4 be such that

V ω(y2) − V ω(x2) = max
N/2≤x≤y≤3N/4

(
V ω(y) − V ω(x)

)
.

According to Proposition 3.4, we have w.h.p. (for all choices of x2 and y2 if there are several
possibilities)

(114) V (y2) − V (x2) ≥ 1

λ
(logN − 2 log logN) and y2 − x2 ≤ qN .
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In order to illustrate how the mixing time can be controlled using the flow of particles, we
start with a simple lemma. Let Jt denote the number of particles on the last portion of the
segment,

(115) Jt := ∑
x≥y2+1

σmin
t (x).

LEMMA 5.3. For any ε > 0, for all k ∈ �1,N/2� and for every t ≥ 0, with high proba-
bility w.r.t. P we have

(116) dω
N,k(t) ≥ 1 − 4E[Jt ]

k
− ε.

PROOF. Setting B := {ξ ∈ �N,k : ∑
x≥y2+1 ξ(x) < k/4}, we have

(117) dω
N,k(t) ≥ ∥∥P ξmin

t − πω
N,k

∥∥
TV ≥ P

[
σmin

t ∈ B
] − πω

N,k(B).

By Lemma 2.3, the second term is smaller than ε with high probability w.r.t. P. Concerning
the first term, we have by Markov’s inequality

(118) P
[
σmin

t ∈ B
] = 1 − P[Jt ≥ k/4] ≥ 1 − 4E[Jt ]

k
. �

Now we can control E[Jt ] by comparing our system with one in which the particles flow
faster. We consider the state space

(119) �̃x2,y2 := {
ξ : �x2, y2 + 1� → Z+ : ∀x ∈ �x2, y2�, ξ(x) ∈ {0,1}},

and define an alternative process on �̃x2,y2 . There is no conservation of the number of parti-
cles in this process: the particles follow the exclusion dynamics in the bulk but new rules are
added at the boundaries. If ξ(x2) = 0, then a particle is added at site x2 with rate wx2−1. At
the other end of the segment, particles can jump from site y2 to site y2 + 1 without respecting
the exclusion rule (i.e., the site y2 + 1 is allowed to contain arbitrarily many particles) and
particles at site y2 + 1 remain there forever. We define the generator of the process to be (for
f : �̃x2,y2 �→R)

(
L̃ω

x2,y2
f

)
(ξ) :=

y2−1∑
z=x2

rω(
ξ, ξz,z+1)[

f
(
ξz,z+1) − f (ξ)

]
+ ωx2−11{ξ(x2)=0}

[
f (ξ + δx2) − f (ξ)

]
+ ωy21{ξ(y2)=1}

[
f (ξ − δy2 + δy2+1) − f (ξ)

]
,

(120)

where rω is defined in (10). We refer to Figure 6 for a graphical description. We let (σ̃
ξ
t )t≥0

denote the corresponding process starting from an initial condition ξ ∈ �̃x2,y2 .

FIG. 6. A graphical representation of the boundary driven process: a bold circle represents a particle, and the
number above every arrow represents the jump rate while a red “×” represents a nonadmissible jump. In addition,
the site y2 + 1 can accommodate infinite many particles and all particles at site y2 + 1 stay put.
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LEMMA 5.4. Let 0 denote the configuration with all sites in �x2, y2 + 1� being empty,
and let (σ̃ 0

t )t≥0 denote the chain associated with the generator L̃ω
x2,y2

starting from 0. Then
we have

(121) Jt ≤ σ̃ 0
t (y2 + 1),

where Jt is defined in (115).

PROOF. Note that for a fixed ω, the two processes (σ̃ 0
t )t≥0 and (σmin

t )t≥0 share the same
jump rates in the interval �x2, y2� as can be seen from the comparison of Figure 6 with
Figure 1. The process (σ̃ 0

t )t≥0 can be constructed together with (σmin
t )t≥0 on the same proba-

bility space using the graphical construction of Section 3.2 with the same clocks (T
(x)
n )x,n∈N

and auxiliary variables (U
(x)
n )x,n∈N for both processes (with the obvious adaptation of the

construction to fit the boundary conditions for (σ̃ 0
t )t≥0). It can then be checked by inspection

that under this coupling, for every t ≥ 0,

(122) ∀x ∈ �x2, y2 + 1�
N∑

z=x

σmin
t (z) ≤

y2+1∑
z=x

σ̃ 0
t (z).

Since the above inequality is satisfied at t = 0, it is sufficient to check that it is conserved by
any update of the two processes. The result then just corresponds to the case x = y2 + 1. �

The next step is to evaluate the rate at which particles flow through the trap for the
boundary driven process. The following result shows that it can be upper bounded by
e−�Vmax/2(1+o(1)), where �Vmax is the largest potential barrier. We refer to Figure 7 for a
heuristic explanation.

PROPOSITION 5.5. There exists a constant C = C(α,P) such that for all t ≥ 0 w.h.p. we
have

(123) E
[
σ̃ 0

t (y2 + 1)
] ≤ tCN− 1

2λ (logN)2(1+ 1
λ
).

FIG. 7. We represent a particle configuration around the potential barrier. The height of a site corresponds to its
potential (and we have drawn V as a piecewise affine function for simplicity). Due to the potential slope, particles
tend to accumulate on the left-hand side of the trap. Since particles partially fill the trap, the effective potential
barrier for particles to overcome to exit the trap is smaller than �Vmax (which is the barrier that a single particle
would have to overcome). It is equal to �V1, the potential difference between the right-most particle and the
right end of the trap. The typical time needed for a particle to escape the trap is thus exp(�V1). On the other
hand, when a particle exits the trap, it must be replaced by a particle coming from the left to maintain the flow.
In other words, an empty site must exit the trap on the left, and by symmetry this takes a typical time exp(�V2),
where �V2 = �Vmax − �V1 is the corresponding energy barrier. The flow of particles is maximized when the
rates at which particles enter and exit the trap are equal, and thus, in its “steady state” the trap is “half-filled”
with particles and �V1 = �V2 = �Vmax/2. The time for a particle to travel through the trap is thus given by
exp(�Vmax/2). Our proof transforms this heuristic into a rigorous upper bound for the flow of particles.
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With Proposition 5.5, whose proof is detailed in the next subsection, we are ready to con-
clude the proof of Proposition 5.2.

PROOF OF PROPOSITION 5.2. By Lemma 5.3 and Lemma 5.4, w.h.p. for P we have

(124) dω
N,k(t) ≥ 7

8
− 4

E[σ̃ 0
t (y2 + 1)]

k
.

In view of Proposition 5.5, we can take

t = 1

8C
kN

1
2λ (logN)−2(1+ 1

λ
)

in (124) to conclude the proof. �

5.3. Proof of Proposition 5.5. Note that σ̃ 0
t (y2 + 1) is a superadditive ergodic sequence.

To see this, we let ϑs denote the time shift operator on the graphical construction variables.
Recalling (46), we set

(125) ϑs

((
T

(x)
i ,U

(x)
i

)
x∈Z,i≥1

) := (
T

(x)
i+i0(x,s) − s,U

(x)
i+i0(x,s)

)
x∈Z,i≥1.

Now we observe that the graphical construction preserves the order � on �̃x2,y2 defined by

(126) ξ � ξ ′ if ∀x ≥ x2,

y2+1∑
z=x

ξ(z) ≤
y2+1∑
z=x

ξ ′(z).

Hence, comparing the dynamic in the interval [s, s + t] with that starting from 0 at time s,
we obtain that

(127) σ̃ 0
s+t (y2 + 1) ≥ σ̃ 0

s (y2 + 1) + (ϑs ◦ σ̃ )0
t (y2 + 1).

Since the time-shift operator ϑs on (T ,U) is ergodic, using (127) and E[σ̃ 0
t (y2 + 1)] ≤ t we

can apply Kingman’s subbadditive ergodic Theorem [20] (continuous time version) to obtain

(128) E
[
σ̃ 0

t (y2 + 1)
] ≤ t

[
lim

s→∞
1

s
σ̃ 0

s (y2 + 1)

]
.

Letting Ns := ∑y2
x=x2

σ̃ 0
s (x) denote the number of mobile particles in the system (particles at

site y2 + 1 which have stopped moving are not counted), we have

(129) σ̃ 0
t (y2 + 1) = ∑

s∈(0,t]
1{Ns<Ns−}.

Letting (Tn)n≥1 denote the sequence of times at which Nt < Nt− (in increasing order), we
have

(130) lim
s→∞

1

s
σ̃ 0

s (y2 + 1) = lim
n→∞

n

Tn

.

By evacuating all the sites in �x2, y2� and adding y2 − x2 + 1 particles at site y2 + 1, we
obtain that for any s ≥ 0 (recall (126))

(131) σ̃ 0
s �

[
σ̃ 0

s (y2 + 1) + y2 − x2 + 1
]
1{y2+1}.

Note that every site in �x2, y2� in the configuration of the right-hand side of (131) is empty.
Running the process for an additional time period of length t on both sides of (131), we obtain
(as a consequence of order preservation)

(132) σ̃ 0
s+t (y2 + 1) ≤ σ̃ 0

s (y2 + 1) + (ϑs ◦ σ̃ )0
t (y2 + 1) + y2 − x2 + 1.
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Now as a consequence of (132) we obtain that for any l > y2 − x2 + 2,

(133) Tl ≥ Tl−(y2−x2+2) + ϑTl
◦ T1.

Since Tl is a stopping time with respect to (Ft )t≥0 (recall (47)), by the strong Markov prop-
erty ϑTl

◦ T1 is independent of T1 and has the same distribution. Iterating the process starting
with l = (r − 1)(y2 − x2 + 2) + 1, we obtain

(134) T(r−1)(y2−x2+2)+1 ≥ T (1)
1 + · · · + T (r)

1 ,

where (T (a)
1 )ra=1 is a sequence of IID copies of T1. This yields that

(135) lim inf
n→∞

Tn

n
≥ 1

y2 − x2 + 2
E[T1].

Finally, let us compare (σ̃ 0
t )t≥0 with (σ̃ ′

t )t≥0 starting from another initial condition, which we
now specify. Let us first choose the number of particles by setting

�(ω) := {
x ∈ �x2, y2� : V (x) ≤ [

V (y2) + V (x2)
]
/2

}
,

k′(ω) := #�(ω).
(136)

We let (σ̃ ′
t )t≥0 be the dynamic with generator (120) and its initial configuration σ̃ ′

0 is ob-
tained by setting σ̃ ′

0(y2 + 1) = 0 and sampling (σ̃ ′
0(x))x∈�x2,y2 � from the invariant probability

measure for the exclusion process on the segment �x2, y2� with k′ particles and environment
(ωx)x∈�x2,y2 � (we denote this probability measure by πω

[x2,y2],k′). Note that πω
[x2,y2],k′ is not the

projection of the invariant probability measure for the chain with generator L̃ω
x2,y2

, defined in
(120), projected onto the segment �x2, y2�. Using monotonicity again, we have

(137) T1 ≥ inf
{
t ≥ 0 : σ̃ ′

t (y2 + 1) = 1
} ≥ inf

{
t ≥ 0 : σ̃ ′

t (x2) = 0 or σ̃ ′
t (y2) = 1

} =: T ′.

Now let us observe that until time T ′, the process (σ̃ ′
t )t≥0 (or rather, its restriction to �x2, y2�)

coincides with the exclusion process on the segment �x2, y2� with k′ particles. Using this, we
can prove the following (the proof is postponed to the end of the section).

LEMMA 5.6. We have

(138) E
[
T ′] ≥ 1

16e2(y2 − x2)
e

V (y2)−V (x2)

2 .

Let us now conclude the proof of Proposition 5.5. Combing (128), (130), (135) and (137),
for all t ≥ 0 we have

(139) E
[
σ̃ 0

t (y2 + 1)
] ≤ t

[
lim

s→∞
1

s
σ̃ 0

s (y2 + 1)

]
≤ t (y2 − x2 + 2)

E[T1] ≤ t (y2 − x2 + 2)

E[T ′] .

Using Lemma 5.6, we obtain

(140) E
[
σ̃ 0

t (y2 + 1)
] ≤ t16e2(y2 − x2 + 2)2e−V (y2)−V (x2)

2 .

By (114), we have w.h.p.,

(141) E
[
σ̃ 0

t (y2 + 1)
] ≤ t16e2(qN + 2)2N− 1

2λ (logN)
1.
λ .

PROOF OF LEMMA 5.6. With a small abuse of notation, in this proof (σ̃ ′
t )t≥0 denotes

the exclusion process on the segment �x2, y2� with k′ particles starting from the stationary
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distribution πω
[x2,y2],k′ . Since E[T ′] ≥ tP[T ′ > t], our goal is to provide a lower bound on

P[T ′ > t] for some well-chosen t > 0. We define

(142)
B1 := {

ξ ∈ ��x2,y2 �,k′ : ξ(x2) = 0
}
,

B2 := {
ξ ∈ ��x2,y2 �,k′ : ξ(y2) = 1

}
.

Using the strong Markov property at T ′ and the fact that jumping rates for particles are
bounded from above by one at every site, we have

P
[∀t ∈ [

T ′,T ′ + 1
]
, σ̃ ′

t ∈ B1 ∪B2
] ≥ e−2.

Using independence as in (111), we have

(143) P
[
T ′ ≤ t

] ≤ e2(t + 1)πω
[x2,y2],k′(B1 ∪B2).

We now head to provide an upper bound on πω
[x2,y2],k′(B1). Recalling the definition of � in

(136), we observe that when ξ ∈ B1, since x2 ∈ � and there are k′ particles, there must be a
particle in �� := �x2, y2� \ �. Let R(ξ) be the position of the rightmost such particle

R(ξ) := sup
{
z ∈ �� : ξ(z) = 1

}
,

and set for z ∈ ��

B1,z := {
ξ ∈ B1 : R(ξ) = z

}
.

By moving the particle from site z to site x2 as in (72), we obtain

πω
[x2,y2],k′(B1,z) = ∑

ξ∈B1,z

πω
[x2,y2],k′

(
ξx2,z

)
e−V (z)+V (x2) ≤ e−V (z)+V (x2) ≤ e−V (y2)−V (x2)

2 ,

and then

(144) πω
[x2,y2],k′(B1) = ∑

z∈��
πω

[x2,y2],k′(B1,z) ≤ (y2 − x2)e
−V (y2)−V (x2)

2 .

Similarly, we can obtain

(145) πω
[x2,y2],k′(B2) ≤ (y2 − x2)e

−V (y2)−V (x2)

2 .

Combining (144) with (145), in (143) we take

t = 1

4e2(y2 − x2)
e

V (y2)−V (x2)

2 − 1

to obtain

(146) E
[
T ′] ≥ 1

2

(
1

4e2(y2 − x2)
e

V (y2)−V (x2)

2 − 1
)

≥ 1

16e2(y2 − x2)
e

V (y2)−V (x2)

2 . �

6. Upper bound on the mixing time. This section is dedicated to the proof of The-
orem 2.4. First, in Section 6.1 we are going to reduce the problem to an estimate of the
transition probability between extremal states, which is Pt(ξmin, ξmax). Next, by the censor-
ing scheme and particle transport (cf. Propositions 3.2 and 3.3) we are going to estimate this
probability. For pedagogical reason, we first treat the simpler case where the number of parti-
cles is small and for which only censoring (that is Proposition 3.2) is needed. This is the case
k ≤ qN (recall (59), which is treated in Section 6.2. The general case qN < k ≤ N/2, which
relies on Proposition 3.3, is then treated in Section 6.4.

Let us introduce notation for the exclusion process with k particles on the segment �a, b�
with environment ω for arbitrary integers a ≤ b, which are used in this section. We let
�[a,b],k denote the corresponding state space, πω[a,b],k denote the the equilibrium measure
and dω[a,b],k(t) denote the total variation distance to equilibrium (from worst starting position,
cf. (15)).
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6.1. Deducing the mixing time from the hitting time of the maximal configuration. Let us
first show that the study of the mixing time can be reduced to that of the probability of hitting
the configuration ξmax starting from the other extremal configuration ξmin.

PROPOSITION 6.1. We have for every t > 0 and n ∈ N,

(147) dω
N,k(nt) ≤ (

1 − Pt(ξmin, ξmax)
)n

.

PROOF. We have (see, for instance, [27], Lemma 4.10)

(148) dω
N,k(t) ≤ d̄ω

N,k(t) := max
ξ,ξ ′

∥∥P ξ
t − P

ξ ′
t

∥∥
TV ≤ max

ξ,ξ ′ P
[
σ

ξ
t �= σ

ξ ′
t

]
.

Using the monotonicity under the graphical construction (cf. Proposition 3.1) for all ξ ∈ �N,k

and t ≥ 0, we have

σmin
t ≤ σ

ξ
t ≤ σmax

t ,

where (σmin
t )t≥0 and (σmax

t )t≥0 are starting from the extremal conditions ξmin and ξmax in
(45). As a consequence for arbitrary ξ and ξ ′, setting τ ′ := inf{t ≥ 0 : σmin

t = σmax
t }, we have

(149) ∀t ≥ τ ′, σ
ξ
t = σ

ξ ′
t .

On the other hand, we have

(150) τ ′ ≤ τ := inf
{
t ≥ 0 : σmin

t = ξmax
}
.

Therefore, (148) implies that

(151) dω
N,k(t) ≤ P(τ > t).

Using again the Markov property and the monotonicity in Proposition 3.1, we have for any
positive integer n,

(152) P(τ > nt) ≤ P
(
σmin

it �= ξmax,∀i ∈ �1, n�
) ≤ P

(
σmin

t �= ξmax
)n

. �

6.2. The case kN ≤ qN . Before stating the main result of this section, let us present a
strategy to bound Pt(ξmin, ξmax) from below. We present in the process a few key technical
lemmas whose proofs are presented in the next subsection. We consider environments in the
following set:

(153) AN :=
{
ω : max

1≤x≤y≤N
y−x≥qN

(
V (y) − V (x)

) ≤ −3 logN
}
.

Note that by Proposition 3.4, AN is an high probability event. This condition ensures that
when considering the exclusion process restricted to subsegments of �1,N � of length 4qN , at
equilibrium the particles typically concentrate on the right half of the segment. If the number
of particles is large enough, it also ensures that typically at equilibrium the last site is occupied
by a particle. This is the content of our first technical lemma.

LEMMA 6.2. If ω ∈ AN , then we have for any x ∈ �0,N − 4qN � and any k ≤ qN ,

πω[x+1,x+4qN ],k
[
ξ̄ (1) ≤ x + 2qN

] ≤ 2q2
NN−3,

πω[x+1,x+4qN ],qN

[
ξ(x + 4qN) = 0

] ≤ 3qNN−3.
(154)
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Our second technical lemma is a direct consequence of Proposition 2.2. It allows to bound
the mixing time of the system for each of the intervals of length 4qN in a quantitative way.
We define

(155) T = TN := 80α−1q4
N

(
4qN

qN

)(
1 − α

α

)2qN

log
(

1 − α

α

)
.

The following result is obtained by taking ε = N−3 in Proposition 2.2.

LEMMA 6.3. Under the assumption (3), for all N sufficiently large we have for for all
k ≤ qN , all x ∈ �0,N − 4qN � and almost every realization of ω,

(156) dω[x+1,x+4qN ],k(T ) ≤ N−3.

Our third technical lemma ensures that in typical environment, the weight of ξmax at equi-
librium is not too small. In the definition of BN,k below, ξmax denotes (with a small abuse of
notation) the maximal configuration with k particles in the segment �N − 4qN + 1,N �.

LEMMA 6.4. We have

(157) lim
ε→0

inf
N≥1

k∈�1,N/2�

P
[
πω

N,k(ξmax) > ε
] = 1.

In particular, if BN,k := {ω : πω[N−4qN+1,N],k(ξmax) ≥ 2q−1
N }, we have

(158) lim
N→∞ inf

k∈�1,qN �
P[BN,k] = 1.

Now that the technical prelimiaries are set, we can introduce the main technical result
proved in this section.

PROPOSITION 6.5. If k ≤ qN , if ω ∈AN ∩BN,k and t0 := T (� N
2qN

� − 1), we have

(159) Pt0(ξmin, ξmax) ≥ 3

2qN

.

In particular, the inequality holds with high probability w.r.t. the environment law P.

The last part of the statement is of course a direct consequence of the first part combined
with (158) and of Proposition 3.4 (which ensures that AN and BN,k are high probability
events). Before providing a proof of Proposition 6.5, let us show how it implies the desired
upper bound on the mixing time.

PROOF OF THEOREM 2.4 WHEN k ≤ qN . By Proposition 6.1 and Proposition 6.5, we
have

(160) dω
N,k(2qN t0) ≤ (

1 − Pt0(ξmin, ξmax)
)2qN ≤

(
1 − 1

qN

)2qN ≤ 1

4
,

which allows us to conclude the proof for the case k ≤ qN with the inequality(
4qN

qN

)
≤

(
44

33

)qN

. �

Let us briefly sketch now our proof of Proposition 6.5. We use Proposition 3.2 to channel
all the particles to the right. More precisely, we use a censoring scheme that during time
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interval [iT , (i +1)T ), with i = 0, . . . , �N/(2qN)�−3 isolates the segment �2iqN +1,2(i +
2)qN � (of length 4qN ) from the rest of the system simply by censoring the transitions along
edges at the extremity of this segment; cf. (161)–(162).

In Lemma 6.6, using a combination of Lemmas 6.2 and Lemma 6.3 we show that with
high probability, at all times, under the censored dynamics, all the particles remain within
this “traveling isolated segment,” which eventually channels all particles to the segment �N −
4qN + 1,N � at time (�N/(2qN)� − 2)T . Once this is done, combining Lemmas 6.3 and 6.4,
we show that with probability at least 3/(2qN) we end up at ξmax within an additional time T .

We introduce our censoring scheme and define (in the middle line i ∈ �1, �N/(2qN)�−3�)

(161)

⎧⎪⎪⎨⎪⎪⎩
C0 := {{4qN,4qN + 1}},
Ci := {{i2qN, i2qN + 1}, {

(i + 2)2qN, (i + 2)2qN + 1
}}

,

C�N/(2qN )�−2 := {{N − 4qN,N − 4qN + 1}}.
We define a censoring scheme by setting (recall that T is defined in (155))

(162) C(t) := Ci for t ∈ [iT , (i + 1)T ), i ∈ �0,
⌈
N/(2qN)

⌉ − 2�,

and C(t) = ∅ for t ≥ (�N/(2qN)� − 1)T . Let us write

(163) Afin := {
ξ ∈ �N,k : ∀x ∈ �1,N − 4qN �, ξ(x) = 0

}
.

Recalling the notation of Section 3.3, we let (σ
min,C
t )t≥0 denote the corresponding censored

dynamics with initial condition ξmin.

LEMMA 6.6. If ω ∈ AN , we have

(164) P
[
σ

min,C
(�N/2qN �−2)T ∈ Afin

] ≥ 1 − N−1.

PROOF. For i ∈ �0, �N/2qN�−2�, we define Ai to be the set of configurations for which
all particles lie in the interval �2iqN + 1,2(i + 2)qN �,

Ai := {
ξ ∈ �N,k : 2iqN < ξ̄(1) ≤ ξ̄ (k) ≤ 2(i + 2)qN

}
.

Now we prove by induction that the probability that particles remain trapped in the segment
�2iqN + 1,2(i + 2)qN � during time interval [iT , (i + 1)T ) is high, which is

P
[
σ

min,C
iT ∈ Ai

] ≥ 1 − i
4q2

N

N3 .(165)

Since 2(�N/2qN�−2)qN ≥ N −4qN , the result (164) follows from the case i = �N/2qN�−
2 in (165). From the definition of ξmin, the inequality in (165) holds for i = 0. Assuming
that (165) holds for i, then from our choice of censoring scheme, during the time interval
[iT , (i + 1)T ) the k particles perform the simple exclusion process on the segment �2iqN +
1,2(i + 2)qN �. By Lemma 6.2 and Lemma 6.3 with x = 2iqN , we have

P
[
σ

min,C
(i+1)T ∈ Ai+1

]
≥ P

[
σ

min,C
iT ∈ Ai

]
− (

πω[2iqN+1,2(i+2)qN ],k
(
ξ̄ (1) ≤ 2(i + 1)qN

) + dω[2iqN+1,2(i+2)qN ],k(T )
)

≥ 1 − i
4q2

N

N3 − 4q2
N

N3 .

(166)

�
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PROOF OF PROPOSITION 6.5. Using Proposition 3.2, it is sufficient to bound the corre-
sponding probability for the censored dynamics, that is,

P C
(�N/2qN �−1)T (ξmin, ξmax).

If σ
min,C
(�N/2qN �−2)T ∈ Afin, then due to our choice of censuring scheme during the time interval

[�N/2qN� − 2T , (�N/2qN� − 1)T ), the dynamics corresponds to an exclusion process with
k particles on the segment �N − 4qN + 1,N �. We have

P C
(�N/2qN �−1)T (ξmin, ξmax)

≥ P
[
σ

ξmin,C
(�N/2qN �−2)T ∈ Afin

](
πω[N−4qN+1,N],k(ξmax) − dω[N−4qN+1,N],k(T )

)
≥ (

1 − N−1)(
2q−1

N − N−3) ≥ 3

2qN

,

(167)

where we have used the definition of BN,k (recall (158)) and Lemma 6.3 with x = N − 4qN .
�

6.3. Proof of auxiliary lemmas.

PROOF OF LEMMA 6.2. To provide an upper bound on

πω[x+1,x+4qN ],k
[
ξ̄ (1) ≤ x + 2qN

]
,

for ξ ∈ �[x+1,x+4qN ],k we define R̄(ξ) to be the rightmost empty site

(168) R̄(ξ) := sup
{
y ∈ �x + 1, x + 4qN � : ξ(y) = 0

}
.

As in (72), for all y, z ∈ �x + 1, x + 4qN � satisfying y − z ≥ qN and ω ∈AN we have

(169) πω[x+1,x+4qN ],k
[
ξ̄ (1) = z, R̄(ξ) = y

] ≤ eV ω(y)−V ω(z) ≤ N−3.

Then we have

πω[x+1,x+4qN ],k
[
ξ̄ (1) ≤ x + 2qN

]
= ∑

z∈�x+1,x+2qN �
y∈�x+4qN−k+2,x+4qN �

π[x+1,x+4qN ],k
[
ξ̄ (1) = z, R̄(ξ) = y

] ≤ 2q2
NN−3.(170)

Now we estimate πω[x+1,x+4qN ],qN
[ξ(x + 4qN) = 0]. For ξ ∈ �[x+1,x+4qN ],qN

, we define its
leftmost particle to be

L̄(ξ) := inf
{
y ∈ �x + 1, x + 4qN � : ξ(y) = 1

}
.

As in (72), we have

(171) πω[x+1,x+4qN ],qN

[
ξ(x + 4qN) = 0; L̄(ξ) = y

] ≤ eV ω(x+4qN )−V ω(y) ≤ N−3,

where we have used y ≤ x + 3qN and ω ∈AN . Then

πω[x+1,x+4qN ],qN

[
ξ(x + 4qN) = 0

]
= ∑

y∈�x+1,x+3qN �

πω[x+1,x+4qN ],qN

[
ξ(x + 4qN) = 0; L̄(ξ) = y

] ≤ 3qNN−3.(172)

�

PROOF OF LEMMA 6.4. Recall the event Ar in (27). Observe that

(173) max
ξ∈Ar

(
V ω(ξmax) − V ω(ξ)

) ≤ 2r2 log
1 − α

α
,
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and then we have

(174)
πω

N,k(ξmax)

πω
N,k(Ar )

≥ |Ar |−1 exp
(
− max

ξ∈Ar

(
V ω(ξmax) − V ω(ξ)

)) ≥ 2−2re−2r2 log 1−α
α .

For given ε ∈ (0, 1
2) sufficiently small, we take

(175) r(ε) :=
⌊( − log(2ε)

2(1 + log 1−α
α

)

)1/2⌋
so that the rightmost-hand side of (174) is larger than or equal to 2ε. Moreover, by (74) we
know that

(176) lim
r→∞ inf

N≥1
k∈�1,N/2�

P

[
πω

N,k(Ar ) ≥ 1 − 2
1 − α

α

(
1 − e

E[logρ1]
2

)−2
e
E[logρ1]r

2

]
= 1.

Since when r is sufficiently large, we have

1 − 2
1 − α

α

(
1 − e

E[logρ1]
2

)−2
e
E[logρ1]r

2 ≥ 1

2
,

then by (176) with r chosen as in (175) we obtain

(177) lim
ε→0

inf
N≥1

k∈�1,N/2�

P
[
πω

N,k(ξmax) ≥ ε
] = 1.

�

6.4. The case kN ≥ qN . To treat the case of a larger number of particles, the problem with
the strategy of the previous subsection is that it does not allow to channel all the k particles
to the right at the same time. What we do instead is that we use the process to transport one
particle to the right, and then use Proposition 3.3 to be able to move all other particles to the
left and iterate the process. We largely recycle the strategy used in the previous section. In the
final step as in (167), we need to deal with the leftmost qN particles performing the exclusion
process restricted to the interval �N − k − 3qN + 1,N − k + qN �, and then define

B′
N,k = {

ω : πω[N−k−3qN+1,N−k+qN ],qN

(
ξ ′

max
) ≥ 2q−1

N

}
,

where ξ ′
max := 1{N−k+1≤x≤N−k+qN }. By Lemma 6.4, we have

(178) lim
N→∞ inf

k∈�qN+1,N/2�
P

[
B′

N,k

] = 1.

PROPOSITION 6.7. If k > qN and ω ∈ AN ∩B′
N,k , setting

t1 :=
(⌈

N − k + qN

2qN

⌉
− 1

)
(k − qN + 1)T ,

where T is defined in (155), we have

(179) Pt1(ξmin, ξmax) ≥ 1

qN

.

PROOF OF THEOREM 2.4 WHEN k > qN . By Proposition 6.1 and Proposition 6.7, we
have

(180) dω
N,k(2qN t1) ≤ (

1 − Pt1(ξmin, ξmax)
)2qN ≤

(
1 − 1

qN

)2qN ≤ 1

4
,
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which allows us to conclude the proof for the case k > qN with the inequality(
4qN

qN

)
≤

(
44

33

)qN

. �

The remainder of the subsection is devoted to the proof of Proposition 6.7. This time we
combine our censoring scheme with deterministic transport of particles to the left of their
current positions, and use Proposition 3.3 instead of Proposition 3.2. Transport of particles
allows us to channel, one by one, the rightmost k − qN particles to the segment �N − k +
qN + 1,N � and use censoring to block these k − qN particles afterwards. We are then left
with the problem of moving the remaining qN particles to the right, and this can be treated as
in Proposition 6.5.

Let us explain our plan to move the rightmost k − qN particles one by one. We proceed by
induction (each step is going to leave aside an event of small probability, and our technical
estimates are such that the sum of these probabilities over all steps will remain small). Let
us start with the channeling of the first particle, which requires r steps with r := �(N − k +
qN)/2qN� − 1 (each of them lasts for a time T which remains defined by (155)). During
the whole process, the leftmost k − qN particles remain blocked on the leftmost sites of the
segment; this can be done by constantly censoring transitions along the edge {k − qN, k −
qN + 1}. When this is done, we are left with an effective system with qN particles on the
segment �k −qN +1,N � (whose length is comprised between N/2 and N ). On this segment,
we are going to apply the same technique as that for the proof of Proposition 6.5: we use
censoring to maintain all these qN particles within a subsegment of size 4qN at all times. The
position of this segment is shifted by an amount 2qN to the right after time T . After r − 1
steps, we are sure that all qN particles are on the segment �N − 4qN + 1,N �. Isolating this
segment with censoring and using Lemma 6.2 (the second estimate), we can guarantee that
after an additional time step, there is a particle on site N .

We can then iterate this strategy. Once we have brought j particles in the segment �N −
j +1,N � (with 1 ≤ j ≤ k−qN ), we transport all other particles k−j particles to the leftmost
sites (as authorized by Proposition 3.3), and censor transitions along the edges {N − j,N −
j + 1} and {k − j − qN, k − j − qN + 1}. This blocks the accumulated j particles on the
right, and leaves us with an effective system with qN particles on the segment �k − j − qN +
1,N − j �, and we repeat the previous strategy to place one particle on site N − j using r

censoring steps.
Once k − qN particles have been brought to the right in this manner, we censor the edge

{N − k + qN,N − k + qN + 1} to lock these particles on the right, and conclude by repeating
once more the procedure of Proposition 6.5 on the segment �1,N − k + qN �, which now
contains only qN particles.

Now that the strategy has been explained, let us write down explicitly the corresponding
censoring scheme, and the transition matrices Qj , which transport particles to the left at
fixed times. Recall that r = �(N − k + qN)/2qN� − 1, and define for j ∈ �0, k − qN �, i ∈
�0, �(N − k + qN)/2qN� − 3�, ai,j := k − qN − j + 2qNi,

Ci,j := {{k − j − qN, k − j − qN + 1}, {ai,j , ai,j + 1},
{ai,j + 4qN, ai,j + 4qN + 1}, {N − j,N − j + 1}},

C∗
j := {{k − j − qN, k − j − qN + 1}, {N − 4qN − j,N − 4qN − j + 1},

{N − j,N − j + 1}}.
(181)
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We define the censoring scheme C by setting

(182)

⎧⎪⎪⎨⎪⎪⎩
C(t) = Ci,j if t ∈ [(i + rj)T , (i + rj + 1)T ),

C(t) = C∗
j if t ∈ [(r(j + 1) − 1

)
T , r(j + 1)T ),

C(t) =∅ if t ≥ r(k − qN + 1)T .

When j = 0 and j = k − qN , the edges {0,1} and {N,N + 1} appear in the set of censored
edges described above. When these edges appear in C(t), this has no effect on the censor-
ing. Then we set sj := jrT , and introduce the matrix transition Qj , which has the effect of
transporting the leftmost k − j particles to the segment �1, k − j �. We define thus Qj by
setting

(183) Qj

(
ξ, ξ∗

j

) = 1, Qj

(
ξ, ξ ′) = 0 if ξ ′ �= ξ∗

j ,

where the function ξ → ξ∗
j is defined by (recall (43))

(184) ξ̄∗
j (�) =

{
� if l ≤ k − j,

ξ̄ (�) if � > k − j.

Since ξ∗
j ≤ ξ , Qj satisfies (53). We let (σ̃t )t≥0 denote the composed censored dynamics

(recall (54)) corresponding to C, (sj )
k−qN

j=1 and (Qj )
k−qN

j=1 and starting from ξmin. We set

ξ0
j := 1�1,k−j � + 1�N−j+1,N �.

To formalize the argument exposed above, we are going to prove by induction that at time sj ,
j particles have been moved to the rightmost sites.

LEMMA 6.8. For all j ∈ �0, k − qN �, we have

(185) P
[
σ̃rjT = ξ0

j

] ≥ 1 − 4jqNN−2.

REMARK 6.9. Strictly speaking, the transport of particles to the left using Qj and the
use of Proposition 3.3 instead of Proposition 3.2 are not necessary, but we felt that it resulted
in a cleaner presentation.

PROOF. The statement is trivial for j = 0. For the induction step, it is sufficient to prove
that

(186) P
[
σ̃r(j+1)T = ξ0

j+1|σ̃rjT = ξ0
j

] ≥ 1 − 4qNN−2.

With our choice for C, the j particles in the interval �N − j + 1,N � do not move between
time instants rjT and r(j + 1)T , it is therefore sufficient to show that

(187) P
[
σ̃r(j+1)T (N − j) = 1|σ̃rjT = ξ0

j

] ≥ 1 − 4qNN−2.

Let us define

(188) Bj :=
{
ξ ∈ �N,k :

N−j∑
x=N−j−4qN+1

ξ(x) = qN

}
.

We can repeat the proof of Lemma 6.6 to obtain that

(189) P
[
σ̃rjT +(r−1)T ∈ Bj |σ̃rjT = ξ0

j

] ≥ 1 − (r − 1)
4q2

N

N3 .

Now in the time interval [rjT + (r − 1)T , r(j + 1)T ), the censoring makes the restriction
of the dynamics to the segment �N − j − 4qN + 1,N − j � an exclusion process with qN
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particles. Hence, using Lemma 6.3 and the second estimate in Lemma 6.2 we have for any
χ ∈ Bj

(190) P
[
σ̃r(j+1)T (N − j) = 1|σ̃rjT +(r−1)T = χ

] ≥ 1 − N−3(1 + 3qN).

Combining (189) and (190), we obtain (187). �

PROOF OF PROPOSITION 6.7. Using Proposition 3.3, it is sufficient to prove that

(191) P[σ̃r(k−qN+1)T = ξmax] ≥ 1

qN

.

Taking j = k − qN in Lemma 6.8 and assuming that ω ∈ B′
N,k , we have

(192) P
[
σ̃(k−qN)rT = ξ0

k−qN

] ≥ 1 − (k − qN)
4qN

N2 ≥ 2

3
.

Hence, the result follows if one can prove that

(193) P
[
σ̃(k−qN+1)rT = ξmax|σ̃(k−qN)rT = ξ0

k−qN

] ≥ 3qN

2
.

With the conditioning, for t ∈ [(k − qN)rT , (k − qN + 1)rT ), the rightmost k − qN particles
are locked in the rightmost k − qN sites and at t = (k − qN)rT the leftmost qN particles are
in the leftmost qN sites. We are in a similar setting as that in Proposition 6.5 with a system of
qN particles in the interval �1,N − (k − qN)� for t ≥ (k − qN)rT . Thus, we can repeat the
proof in Proposition 6.5 to obtain (193) (the condition ω ∈ B′

N,k plays here exactly the same
role as ω ∈ BN,k in the proof of Proposition 6.5). �
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