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METASTABILITY FOR EXPANDING BUBBLES ON A STICKY SUBSTRATE

BY HUBERT LACOINa AND SHANGJIE YANGb

IMPA, alacoin@impa.br, byashjie@impa.br

We study the dynamical behavior of a one dimensional interface inter-
acting with a sticky impenetrable substrate or wall. The interface is subject
to two effects going in opposite directions. Contacts between the interface
and the substrate are given an energetic bonus while an external force with
constant intensity pulls the interface away from the wall. Our interface is
modeled by the graph of a one-dimensional nearest-neighbor path on Z+,
starting at 0 and ending at 0 after 2N steps, with the wall being the horizontal
axis. At equilibrium each path ξ = (ξx)2N

x=0 is given a probability propor-

tional to λH(ξ) exp( σ
N

A(ξ)), where H(ξ) := #{x : ξx = 0} and A(ξ) is the
area enclosed between the path ξ and the x-axis. We then consider the classi-
cal heat-bath dynamics which equilibrates the value of each ξx at a constant
rate via corner-flip.

Investigating the statics of the model, we derive the full phase diagram in
λ and σ of this model, and identify the critical line which separates a localized
phase where the pinning force sticks the interface to the wall and a delocalized
one, for which the external force stabilizes ξ around a deterministic shape at
a macroscopic distance of the wall. On the dynamical side, we identify a
second critical line, which separates a rapidly mixing phase (for which the
system mixes in polynomial time) to a slow phase where the mixing time
grows exponentially. In this slowly mixing regime, we obtain a sharp estimate
of the mixing time on the log scale, and provide evidences of a metastable
behavior.

1. Introduction. The present manuscript investigates the dynamical behavior for a dis-
crete interface model in the vicinity of an impenetrable substrate or wall. We assume that the
interface is subject to:

(A) An interaction with the wall, modelized by an energetic reward or penalty for each
contact.

(B) An homogeneous external force field, which drives away the interface from the wall
which translates into adding a potential energy proportional to the interface heights.

We want to understand in depth how these two competing effects can affect the mixing prop-
erties of the system. We consider the simplest possible setup. Our interface is modeled by the
graph of a one dimensional simple random walk, with a configuration space given by

�N := {
ξ ∈ Z

2N+1+ : ξ0 = ξ2N = 0; ∀x ∈ �1,2N �, |ξx − ξx−1| = 1
}
.

We are going to consider a reversible Markov chain (ηt )t ≥ 0 on �N with transition rules
which reflect the two driving forces described in (A) and (B) (see (2.5) below for an explicit
description of the Markov chain and (2.2) for the corresponding reversible probability).

The study of effective interface models is a large field of study both in mathematics and
physics. The problem of wetting of a random walk (which is the study of effect (A) alone)
dates back to the seminal paper of [10]. Several variants and generalizations of the model
have been considered since (with a particular interest for the disordered model see [16, 17]
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for a review). Interest in the dynamics associated to this model and its mixing properties came
later [4, 5, 34].

Interfaces subjected to an external force (effect (B)), on the other hand, have been studied,
both because it is a natural model for growth and because of its connection with the asym-
metric simple exclusion process, mostly in the infinite volume setup (see, e.g., [7, 14, 30, 31]
for early references dealing with hydrodynamics with total, partial and weak asymmetry).
The model on the segment is slightly different, since in particular the boundary condition
makes the dynamics reversible, its static and dynamical properties have been investigated in
[2, 22–24, 28] (see also [13, 32] for variants with open boundaries and random environment).

As can be seen in the above references, under the effect of (A) or (B) alone, the system
mixes fast. By this, we mean that the mixing time (whose definition is recalled in Section 2
below) grows only like a power of the size of the system.

In this paper, we show that this state of fact changes dramatically when (A) and (B) are
combined, at least for some choices of parameters. Each of the effects (A) and (B) favors
a certain behavior of the interface, and the behavior favored by (A) is very different from
that favored by (B). To get the best of the energetic bonus awarded for contacts with the
wall, the interface wants to locally optimize the contact fraction which implies staying very
close to the wall (see [16], Theorem 2.4, and Figure 3). On the other hand the pulling force,
when considered alone, makes the interface stabilize around a macroscopic profile which
optimizes the competition between the energetic reward given by the pulling force field and
the large deviation cost for the one dimensional random walk (see [22], Theorem 4, and
Figure 3). When both the attraction to the wall and the external field are turned on, there is
no efficient way to combine the two above strategies. As a result, the equilibrium state of the
system is simply determined by comparing which of the two effects is dominant. In particular,
we have an abrupt phase transition when the external field grows, from a localized phase
where the interface sticks to the wall, to a delocalized one, where the interface is repelled
at a macroscopic distance away from it (see Figure 1). As a first result, we give a detailed
description of the equilibrium phase diagram of the system, which includes the identification
of the free-energy and a description of the interface behavior on the critical line.

The more important contribution is the study of the dynamics. We establish that depending
on the value of the parameters which tune the intensity of effects (A) and (B) the system
either mixes in polynomial time or takes an exponential time to reach its equilibrium state.
We show that when the wall is attractive and the external force is sufficiently large, then the
mixing time becomes exponentially large in the size of the system. Moreover, we identify
the critical line which separates the fast-mixing regime from the slow-mixing regime, which
differs from the one appearing on the equilibrium phase diagram.

The slow mixing phase displays a metastable behavior. In that regime, the two strategies
which maximize the benefits of contact with the wall and the external force field respectively,
correspond heuristically to two distinct local equilibrium states for the dynamics. The mixing
time then corresponds to the typical time needed to travel from the thermodynamically less
favorable state (corresponding to the less beneficial strategy) to the point of equilibrium. We

FIG. 1. The typical behavior of the interface changes when the external force field passes a certain threshold
from a localized phase to a delocalized phase.
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prove that properly rescaled, the traveling time for leaving the thermodynamically unstable
local equilibrium rescales to an exponential random variable.

This metastable picture is present in many systems of statistical mechanics and has been
the object of an extensive mathematical attention in the past two decades (see [1, 3] and
references therein). In the specific realm of pinning model, our picture is reminiscent of the
Cassie–Baxter/Wenzel transition observed for wetting of irregular substrate (see [15] and ref-
erences therein for a review and studies of the phenomenon and [6, 26] for the mathematical
treatment of a simplified model accounting for it).

2. Model and results.

2.1. The setup.

The static model. Let us now introduce a simple statistical mechanics model which com-
bines the substrate interaction and the external force-field effect. Consider the set of nonnega-
tive integer-valued one-dimensional nearest-neighbor paths which start at 0 and end at 0 after
2N steps, that is,

(2.1) �N := {
ξ ∈ Z

2N+1+ : ξ0 = ξ2N = 0; ∀x ∈ �1,2N �, |ξx − ξx−1| = 1
}
,

where N ∈ N, and �a, b� := [a, b] ∩ Z for a, b ∈ R with a < b. For ξ ∈ �N , we denote by
H and A respectively, the number of zeros and the (algebraic) area between the path and the
horizontal axis

H(ξ) :=
2N−1∑
x=1

1{ξx=0} and A(ξ) :=
2N∑
x=1

ξx.

We define a probability measure on �N based on the Gibbs weight associated to an Hamilto-
nian which is the sum of two terms, one proportional to the area and another one proportional
to the number of contacts. We rescale the area by a factor N so that these two effects play on
the same scale. Given λ ≥ 0 and σ ∈ R, we define μ

λ,σ
N on �N by

(2.2) μ
λ,σ
N (ξ) := 2−2NλH(ξ) exp( σ

N
A(ξ))

ZN(λ,σ )
,

where ZN(λ,σ ) is the partition function, given by

(2.3) ZN(λ,σ ) := 2−2N
∑

ξ ′∈�N

λH(ξ ′) exp
(

σ

N
A
(
ξ ′)).

By convention, 00 := 1 and 0k := 0 for any positive integer k ≥ 1. The factor 2−2N is irrel-
evant for the definition of μ

λ,σ
N but is convenient for the partition function. When it is clear

from the context, we omit the indices λ and σ in μ
λ,σ
N . The graph of ξ depicts the spatial

configuration of an interface (see Figure 2).

The dynamics. The object of this paper is to investigate the relaxation property of the
Glauber dynamics associated with the equilibrium measure μ

λ,σ
N . This is a continuous-time

reversible Markov chain on �N , which proceeds by flipping the corners in the path ξ ∈ �N .
For ξ ∈ �N and x ∈ �1,2N − 1�, we define ξx by

(2.4) ξx
y :=

⎧⎪⎪⎨⎪⎪⎩
ξy if y �= x,

(ξx−1 + ξx+1) − ξx if y = x and ξx−1 = ξx+1 ≥ 1 or ξx−1 �= ξx+1,

ξx if y = x and ξx−1 = ξx+1 = 0.
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FIG. 2. A graphical representation of the jump rates for the system. A transition of the chain corresponds to
flipping a corner, whose rate is chosen such that the chain is reversible with respect to μ

λ,σ
N . The red dashed

corner is not available, due to the nonnegative restriction of the state space �N . Note that not all of the possible
transitions are shown in the figure.

In other words, if ξx−1 = ξx+1, ξ presents a local extremum at x and ξx is obtained by flipping
the corner at the coordinate x provided that ξx ∈ �N (see Figure 2). The rates at which each
corner is flipped are the following:

(2.5) rN
(
ξ, ξx) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(2σ
N

)

1 + exp(2σ
N

)
if ξx−1 = ξx+1 > ξx ≥ 1,

1

1 + exp(2σ
N

)
if ξx > ξx−1 = ξx+1 > 1,

λ

λ + exp(2σ
N

)
if (ξx−1, ξx, ξx+1) = (1,2,1),

exp(2σ
N

)

λ + exp(2σ
N

)
if (ξx−1, ξx, ξx+1) = (1,0,1),

0 if ξx−1 �= ξx+1 or ξx−1 = ξx+1 = 0.

The other transition rates rN(ξ, ξ ′) when ξ ′ is not one of the ξxs are equal to zero. The
generator LN of the Markov chain is thus given (for f : �N →R) by

(2.6) (LNf )(ξ) := ∑
ξ ′∈�N

rN
(
ξ, ξ ′)[f (ξ ′)− f (ξ)

]= 2N−1∑
x=1

rN
(
ξ, ξx)[f (ξx)− f (ξ)

]
.

An interpretation for LN is that for each x, the coordinate ξx is resampled with respect to the
conditional equilibrium measure μN(· | (ξy)y �=x). Indeed the generator can be rewritten as

(LNf )(ξ) =
2N−1∑
x=1

[
Qx(f )(ξ) − f (ξ)

]
,

where Qx is the following operator:

Qx(f )(ξ) := μN

(
f (ξ) | (ξy)y �=x

)
.

Here and in what follows ν(f ) is used to denote the expectation of f with respect to ν and
similar convention is used for conditional expectation. The chain is irreducible, and since the
rates rN satisfy the detailed balance condition for the measure μN , it is also reversible. We are
interested in the speed of relaxation to equilibrium of the above dynamics which is encoded
by the spectral gap of the generator LN . In our context, the spectral gap can be defined as
the minimal positive eigenvalue of −LN . It can be characterized using the Dirichlet form
associated with the dynamic defined by

E(f ) := −〈f,LNf 〉μN
=

2N−1∑
x=1

μN

(
(Qxf − f )2),
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where 〈f,g〉μN
:= ∑

ξ∈�N
μN(ξ)f (ξ)g(ξ) denotes the usual inner-product in L2(μN).

Moreover, the spectral gap, denoted by gapN(λ,σ ), is the minimal positive eigenvalue of
−LN and the relaxation time is its inverse. That is,

(2.7) T N
rel(λ, σ ) := sup

f :VarμN
(f )>0

VarμN
(f )

E(f )
= gap−1

N (λ,σ ),

where VarμN
(f ) := 〈f,f 〉μN

− 〈f,1〉2
μN

.

2.2. Equilibrium results. While our main result concerns the dynamics, our first task is
to understand the properties of the model at equilibrium, and in particular the asymptotic
behavior of the partition function. Our result is obtained via comparison with two previously
studied models.

The random walk pinning model. The case σ = 0 is very well understood, since in that
case the model is the classical random walk pinning model in [10]. We refer to [16] (see also
[5, 34] for studies of the dynamics). The model undergoes a phase transition at λ = 2: when
λ < 2, our random interfaces typically have a finite number of contact points with the x-axis
and typical heights are of order

√
N while when λ > 2, we have a positive density of contact

points with the x-axis and the largest height is of order logN .
This transition is encoded in the free energy of the model defined by

F(λ) := lim
N→∞

1

2N
logZN(λ,0).

From [16], Proposition 1.1, the free energy can be computed explicitly and we have (see [26],
equation (1.5)),

(2.8) F(λ) = log
(

λ

2
√

λ − 1

)
1{λ>2}.

Furthermore, we have the following, more detailed asymptotics for the partition function (cf.
[16], Theorem 2.2):

(2.9) ZN(λ,0) =

⎧⎪⎪⎨⎪⎪⎩
(
1 + o(1)

)
CλN

−3/2 if λ ∈ [0,2),(
1 + o(1)

)
C2N

−1/2 if λ = 2,(
1 + o(1)

)
Cλe

2NF(λ) if λ > 2.

Our aim is to derive similar precise asymptotics when σ > 0.

The weakly asymmetric simple exclusion process on the segment. Another case for which
details on the partition function have been obtained is that when λ = 1, σ > 0, and no half-
space constraint is given (meaning that we allow for ξx < 0). In that case, the model corre-
sponds to the equilibrium height profile of the weakly asymmetric simple exclusion process
(or WASEP) on the line segment �1,2N � with N particles. Its equilibrium properties have
been investigated in details in [22], Section 2 (also with the objective of studying the dy-
namics) with some attention given to the asymptotic behavior of the corresponding partition
function, namely

(2.10) Z̃N(σ ) := 2−2N
∑

ξ∈�̃N

exp
(

σ

N
A(ξ)

)
,

where

(2.11) �̃N := {
ξ ∈ Z

2N+1 : ξ0 = ξ2N = 0; ∀x ∈ �1,2N �, |ξx − ξx−1| = 1
}
.
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In particular by [22], Proposition 3, the limit

lim
N→∞

1

2N
log Z̃N(σ ) := G(σ),

exists and is given by

(2.12) G(σ) =
∫ 1

0
L
(
σ(1 − 2x)

)
dx where L(x) := log coshx.

Furthermore we have (from [22], Lemma 11, in the case k = 1, α = 1, see also (3.7)–(3.9)
below)

(2.13) Z̃N(σ ) = (
1 + o(1)

)
CσN−1/2e2NG(σ).

The hybrid model. In the present paper, we identify the free energy when both pinning
and area tilt are present, and identify (up to a constant) the right order asymptotic.

PROPOSITION 2.1. We have for any λ ≥ 0 and σ ≥ 0

(2.14) lim
N→∞

1

2N
logZN(λ,σ ) = F(λ) ∨ G(σ).

More precisely, there exists a constant C1(λ, σ ) > 0 such that:

(1) If G(σ) > F(λ), then for all N ≥ 1 we have

(2.15)
1

C1(λ, σ )
≤

√
NZN(λ,σ )

exp(2NG(σ))
≤ C1(λ, σ );

(2) If G(σ) ≤ F(λ) and λ > 2, then for all N ≥ 1 we have

(2.16)
1

C(λ)
≤ ZN(λ,σ )

exp(2NF(λ))
≤ C(λ).

The above result confirms that the two effects of area tilt and pinning do not combine and
that only the stronger of the two (which is determined by the comparison of F(λ) and G(σ))
prevails. In the case of a tie between F(λ) and G(σ), the estimates (2.15)–(2.16) entails that
the pinning has a stronger effect. This is illustrated in Theorem 2.4 below.

REMARK 2.2. In the result above, we do not identify the asymptotic equivalent of the
partition function in (2.15)–(2.16) and leave unmatching constants for the upper and lower
bounds. This is mostly to avoid lengthier computation and because the estimates (2.15)–
(2.16) are sufficient to prove our results about the dynamics.

REMARK 2.3. We excluded the case σ < 0 from the analysis. Little efforts would be
necessary to show that we have in that case also

(2.17) lim
N→∞

1

2N
logZN(λ,σ ) = F(λ),

and that (2.16) also holds. The case λ < 2 and σ < 0 should correspond to a different regime
where

(2.18) −C1(λ, σ )N1/3 ≤ logZN(λ,σ ) ≤ − 1

C1(λ, σ )
N1/3.

This is reminiscent of the behavior observe in [9] for a Brownian motion in presence of a
curved barrier (see also references therein for numerous occurrences of N1/3 fluctuation).
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FIG. 3. The macroscopic shape of the substrate in equilibrium when F(λ) ≥ G(σ) (at the top) and F(λ) < G(σ)

(at the bottom). The dashed line illustrates the macroscopic shape, which is the scaling limit when N → ∞ (The
dashed line in the top figure coincides with the x-axis.).

This is in any case out of the focus of this paper. Note that very precise detailed results have
been obtained on the behavior of random walks constrained to be positive and subject to a
negative area tilt have been studied in [20] (see also [12, 19] for results obtained for 2D Ising
interfaces under similar constraints).

The information we gathered about the partition function allows for a detailed description
of the typical behavior of ξ under μ

λ,σ
N . Let us define

(2.19) Mσ(u) :=
∫ u

0
tanh

(
σ(1 − x)

)
dx = 1

σ
log
(

cosh(σ )

cosh(σ (1 − u))

)
.

THEOREM 2.4. For λ ≥ 0, σ > 0, we have:

1. if G(σ) > F(λ), then for every ε > 0 there exists δ > 0 such that for all N sufficiently
large,

(2.20) μN

(
sup

u∈[0,2]

∣∣∣∣ 1

N
ξ�uN� − Mσ(u)

∣∣∣∣> ε

)
≤ e−δN ;

2. if G(σ) < F(λ), then for every ε > 0 there exists δ > 0 such that for all N sufficiently
large,

(2.21) μN

(
sup

x∈�0,2N �
ξx > εN

)
≤ e−δN ;

3. if G(σ) = F(λ), then for every ε > 0 and all N sufficiently large,

(2.22)
1

C(λ)
√

N
≤ μN

(
sup

x∈�0,2N �
ξx > εN

)
≤ C(λ)√

N
,

and furthermore there exists δ > 0 such that

(2.23) μN

(
sup

x∈�0,2N �
ξx > εN and sup

u∈[0,2]

∣∣∣∣ 1

N
ξ�uN� − Mσ(u)

∣∣∣∣> ε

)
≤ e−δN .

REMARK 2.5. Note that the corresponding shape result in the case of pure pinning (σ =
0) can be deduced from [16], Chapter 2, while that for WASEP interfaces (corresponding to
(2.10)) can be extracted from the results in [22].
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FIG. 4. The statics phase diagram for the free energy F(λ,σ ): the red curve is F(λ) = G(σ) and λ > 2, the
black line is λ = 2 and σ ≤ 0, and the blue line is λ ∈ [0,2] and σ = 0.

REMARK 2.6. Looking at (2.14) we see that the free energy of our model defined by

(2.24) F(λ, σ ) := lim
N→∞

1

2N
logZN(λ,σ ),

is real-analytic in λ and σ , except on the curve {(λ, σ ) : λ ≥ 2,F (λ) = G(λ)}, on the half line
line {(λ, σ ) : λ = 2, σ ≤ 0} and the segment {(λ, σ ) : λ ∈ [0,2], σ = 0} (see Figure 4). The
partial derivatives of F(λ, σ ) (corresponding to the asymptotic contact fraction and rescaled
area respectively) are discontinuous across the line, indicating that the corresponding phase
transition is of first order.

2.3. Dynamics results. As the main result for our paper, we manage to identify two
regimes for the dynamics, one where the system relaxes in polynomial time and one where
the relaxation time grows exponentially with the size of the system. To state our result, we
need to introduce a new quantity. We define the activation energy of the system by

(2.25) E(λ,σ ) = G(σ) ∧ F(λ) − inf
β∈[0,1]

(
βG(βσ) + (1 − β)F (λ)

)
.

Note that E(λ,σ ) ≥ 0 and that E(λ,σ ) > 0 if and only if the equation

(2.26) G(βσ) + σβG′(βσ) − F(λ) = 0

admits a solution in (0,1). This condition is equivalent to G(σ) + σG′(σ ) > F(λ) > 0.

The main result. We show that the system relaxation to equilibrium is “fast”, that is,
polynomial in N when E(λ,σ ) = 0 while it is exponentially slow when E(λ,σ ) > 0.

THEOREM 2.7. For all λ > 2 and all σ > 0, we have

(2.27) lim
N→∞

1

2N
logT N

rel(λ, σ ) = E(λ,σ ).

When E(λ,σ ) = 0, there exist constants C(λ,σ ) > 0 and C(λ) ≥ 1 such that for all N ≥ 1,

(2.28) C(λ,σ )−1N ≤ T N
rel(λ, σ ) ≤ C(λ,σ )NC(λ).

When E(λ,σ ) > 0, there exist constants C(λ,σ ) > 0 and C′(λ, σ ) > 0 such that for all
N ≥ 1,

C ′(λ, σ )−1N−2 ≤ T N
rel(λ, σ )e−2NE(λ,σ ) ≤ C′(λ, σ )NC(λ,σ).
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FIG. 5. The dynamical phase diagram in the regime λ > 2 and σ > 0: The line F(λ) = G(σ) separates the
localized phase from the delocalized phase, while the line G(σ) + σG′(σ ) = F(λ) separates the rapidly mixing
phase from the slow mixing phase.

The curve {(λ, σ ) : σ > 0,G(σ) + σG′(σ ) = F(λ)} delimits a second phase transition
(the first transition being the wetting transition materialized by the curve F(λ) = G(σ) see
Figure 5) from a slow mixing regime to a fast mixing regime. This transition is not visible in
the phase diagram of the static model and appears when considering the dynamics.

Mixing time. For the sake of completeness, let us mention how our result translates for
the mixing time of the Markov chain (see [29] for a full review of the topic). We let (η

ξ
t )t≥0

denote the Markov chain with generator LN (2.6) starting with initial condition ξ ∈ �N , and
let P

ξ
t denote its marginal distribution at time t . For all ε ∈ (0,1), the ε-mixing time for the

dynamics is

(2.29) T
N,λ,σ

mix (ε) := inf
{
t ≥ 0 : sup

ξ∈�N

∥∥P ξ
t − μN

∥∥
TV ≤ ε

}
,

where ‖π1 − π2‖TV := 1
2
∑

ξ∈�N
|π1(ξ) − π2(ξ)| denotes the total variation distance. By

[29], Lemma 20.11, Theorem 12.3, the mixing time can be compared to the relaxation time
as follows:

(2.30) T N
rel(λ, σ ) log

1

2ε
≤ T

N,λ,σ
mix (ε) ≤ T N

rel(λ, σ ) log
1

εμ∗
N

,

where μ∗
N := minξ∈�N

μN(ξ). It is almost immediate to check that in our case logμ∗
N is of

order N (with a prefactor depending on λ and σ ). Thus, Theorem 2.7 remains essentially if
one replaces T N

rel(λ, σ ) by T
N,λ,σ
mix (ε).

A first heuristic. Let us try to give a first explanation for the slower relaxation time when
E(λ,σ ) > 0 (additional elements will be brought in the course of the proof see the discussion
in Section 4.1). In that case, the state space displays two distinct “wells of potential” for the
effective energy functional

V : β �→ −βG(βσ) − (1 − β)F (λ).
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V

β-axis1
0

(a) G(σ) + σG′(σ ) ≤ F(λ)

where E(λ,σ) = 0;

V

β-axis
0

1

(b) G(σ) + σG′(σ ) > F(λ)

and F(λ) ≥ G(σ) where E(λ,σ) > 0;

V

β-axis
0

1

(c) G(σ) > F(λ)

where E(λ,σ) > 0.

FIG. 6. The shapes of the functional V (β) := −βG(βσ) − (1 − β)F (λ) for three phases: (a)
G(σ) + σG′(σ ) ≤ F(λ); (b) G(σ) + σG′(σ ) > F(λ) and F(λ) ≥ G(σ); (c) G(σ) > F(λ).

The parameter β ∈ [0,1] above corresponds to the fraction of the polymer length which is
unpinned and the functional corresponds to the contribution to the partition function (on the
exponential scale) of the polymer configurations which are macroscopically unpinned on a
fraction β of their length. The idea is that, when the dynamic runs, the unpinned fraction
should evolve like a stochastic diffusion on the segment, with a potential 2NV (·).

The time e2NE(λ,σ ) corresponds to the time required for such a diffusion to overcome the
energy barrier between the two local mimina of V (β) (at 0 and 1 see Figure 6).

We obtain more detailed information concerning the tunnelling time between the higher
local minimum of V (which corresponds to a locally stable, or metastable state) and the
absolute minimum which corresponds to the equilibrium state. For ξ ∈ �N , we define the
(half) length of the largest excursion of ξ to be

(2.31)
Lmax(ξ) = sup

{
� ∈ �1,N � : ∃x ∈ �0,2N �, ξx = ξx+2� = 0,

∀y ∈ �1,2� − 1�, ξx+y > 0
}
.

Assuming that E(λ,σ ) > 0, we let β∗ ∈ (0,1) denote the unique solution of (2.26) and let
E i

N , i = 1,2 be the domains of attraction of the two local minima of V

(2.32)
E1

N := {
ξ ∈ �N : Lmax(ξ) ≤ β∗N

}
,

E2
N := {

ξ ∈ �N : Lmax(ξ) > β∗N
}
.

We let HN denote the domain of attraction of the higher of these two minima, that is,

(2.33) HN :=
{
E1

N if G(σ) > F(λ),

E2
N if G(σ) ≤ F(λ).

Our choice for breaking the tie when G(σ) = F(λ) is not arbitrary at all and comes from the
estimates for the partition function beyond the exponential scale obtained in Proposition 2.1.

According to our heuristic analysis, the behavior of the dynamics when E(λ,σ ) > 0
should be the following. If starting from a configuration ξ ∈ HN , the system should quickly
thermalize in HN (within a time which is polynomial in N ) and then take a time of order
exp(2NE(λ,σ )) to jump from HN to �N \ HN and reach equilibrium. Moreover, when
properly rescaled the time for jumping from HN to �N \ HN should converge to an expo-
nential random variable.

These features (existence of different time scales, and loss of memory from one time scale
to another) are the signature of metastable behavior of the system. We refer to [3, 27] for an
introduction to the phenomenon and a review of the literature.
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Given ν a probability on �N we let Pν denote the law of the Markov chain (ηt )t≥0 starting
with η0 distributed as ν. Our last result establishes the metastability of the system in the sense
that it shows that the dynamics starting from HN exits it at an exponential rate which is given
by the relaxation time of the dynamics.

THEOREM 2.8. When E(λ,σ ) > 0, we have

lim
N→∞PμN(·|HN)(ηtT N

rel(λ,σ ) ∈ HN) = exp(−t),

and the finite-dimensional distributions of the process 1HN
(ηtT N

rel(λ,σ )) (under PμN(·|HN)) con-
verges to that of a Markov process which starts at one and jumps, at rate one, to zero where
it is absorbed.

REMARK 2.9. We have chosen to present the result in the above form because it comes as
an easy consequence of the analysis needed to prove Theorem 2.7 and of a general criterion
established in [1]. Pushing the analysis further and following the ideas developed in [4],
Section 1.3, for monotone system, one can most likely get a more detailed picture of the
metastable behavior (convergence profile to equilibrium starting from extremal conditions,
exponential hitting times for the potential wells etc.. . . ).

2.4. Organization of the paper. In Section 3, we gather most of the technical estimates
on the partition function ZN(λ,σ ). This contains in particular the proof of Proposition 2.1
and Theorem 2.4 but also some of the estimates needed in the following sections to estimate
the relaxation time.

In Section 4, we derive the lower bound on the relaxation time in Theorem 2.7. This is the
easier of the two bounds, but perhaps the more important since the proof allows to identify
exactly what slows down the relaxation to equilibrium, which is a single bottleneck in the
space of configuration.

In Section 5, we prove almost matching upper bound (up to correction of polynomial or-
der). Our proof relies on the combination of several techniques (induction, chain reduction,
path/flow methods. . . ). While these techniques now became part of the classic toolbox to
study mixing time, their combination and implementation to this case required an insight-
ful understanding of the relaxation mechanism of this particular system. This is the most
technical part of the paper.

In Section 6, we show that the estimates proved in previous sections are sufficient to check
all the conditions needed to apply the general metastability results from [1].

About notation. In order to make the proof more readable, we avoid writing integer parts
and write in many instances

∑t
i=1 for

∑�t�
i=1. The constants used in the proof are not numbered

the same C can assume different values in different equations. We tried to underline the
dependence in the parameter by writing C(λ) and C(λ,σ ) when it has some importance,
with a particular care for the dependence in σ since some parts of the proof crucially rely
on it.

3. Equilibrium behavior and partition function asymptotics. We expose in this sec-
tion a variety of technical results which not only allows to the asymptotics for the partition
functions contained in Proposition 2.1, but also provide a detailed understanding of the “ge-
ometry” of the equilibrium measure μ

λ,σ
N . These results are going to be required to analyse
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the dynamics and prove Theorem 2.7. Our starting point is the observation that decomposing
the path into excursions away from the x-axis and factorizing we obtain

(3.1) ZN(λ,σ ) :=∑
k≥1

∑
n1,...,nk∑k
i=1 nk=N

λk−1
k∏

i=1

Zni

(
0,

σni

N

)
.

Hence, our first task is going to be to understand the detailed behavior of ZN(0, σ ) for a large
range of σ and then use it in the above decomposition.

3.1. The case λ = 0. This case is first treated separately. It then plays an important role
to obtain estimates both for λ ≤ 2 and λ > 2. The statement is actually more precise than
what is required for Proposition 2.1 (in the sense that it is uniform in σ ). This precision is
necessary for some of the spectral gap estimates in Section 5.

PROPOSITION 3.1. For all K > 0, there exists a constant C = CK > 0, such that for all
N ≥ 1, and all σ ∈ [0,K]

(3.2)
1

C
√

N

(
N−1/2 ∨ σ

)2 ≤ ZN(0, σ )

exp(2NG(σ))
≤ C√

N

(
N−1/2 ∨ σ

)2
,

where G(σ) is defined in (2.12). Moreover, given ε,K > 0 then, there exists δ = δ(ε) > 0
such that we have for all N ≥ N0(ε,K), and σ ∈ [0,K]

(3.3) μ
0,σ
N

(
sup

u∈[0,2]

∣∣∣∣ 1

N
ξ�uN� − Mσ(u)

∣∣∣∣> ε

)
≤ e−δN .

PROOF. Our proof follows the mainline of [22], Proposition 3, with an additional care
needed to deal with the positivity constraint. Hence, the first step is to reduce the statement to
the estimate of the probability of a given event. We let P denote the distribution of the nearest-
neighbor symmetric simple random walk in Z starting from 0. Given a simple random walk
trajectory, we define AN(S) :=∑2N−1

n=1 Sn + S2N

2 , to be the algebraic area between the graph
of S = (Sn)

2N
n=1 and the x-axis. We have (the tilt by −σS2N having no effect)

(3.4) ZN(0, σ ) = E
[
e

σAN (S)

N
−σS2N 1{S2N=0;∀n∈�1,2N−1�,Sn>0}

]
.

We introduce νN a probability which is absolutely continuous with respect to P with density
given by

(3.5)
dνN

dP
(S) := e

σAN (S)

N
−σS2N

E[e σAN (S)

N
−σS2N ]

.

The tilt by −σS2N has the effect of recentering the distribution of S2N and to make the event
{S2N = 0} typical under νN . Indeed let (Xk)1≤k≤2N denote the increments of our random
walk, and we have

(3.6)
σAN(S)

N
− σS2N =

2N∑
k=1

hN
k Xk where hN

k := σ

N

(
N − k + 1

2

)
.

We have

(3.7) ZN(0, σ ) = E
[
e

σAN (S)

N
−σS2N

]
νN

(
S2N = 0; ∀n ∈ �1,2N − 1�, Sn > 0

)
.
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Recalling the definition of L in (2.12) we have

(3.8) E
[
e

σAN (S)

N
−σS2N

]= exp

( 2N∑
k=1

L
(
hN

k

))
.

By the approximation of Riemann integral and the Taylor–Lagrange inequality (we have
L′′(x) = 1 − tanh2(x) ∈ [0,1]) we obtain∣∣∣∣∣

2N∑
k=1

L
(
hN

k

)− 2N

∫ 1

0
L
(
σ(1 − 2x)

)
dx

∣∣∣∣∣≤ σ 2

4N
,(3.9)

and hence that

(3.10)
∣∣log E

[
e

σAN (S)

N
−σS2N

]− 2NG(σ)
∣∣≤ σ 2

4N
.

The first term in the r.h.s. in (3.7) can be replaced by e2NG(σ) to obtain an asymptotic equiv-
alent. The asymptotic equivalent of the second term νN(· · · ) is the object of Proposition 3.2
which allows to conclude the proof of (3.2).

Let us now prove (3.3). For an arbitrary event A satisfying A ⊆ {S2N = 0}, we can perform
the rewriting of ZN(0, σ ) in (3.7) to obtain

(3.11) μ
0,σ
N (A) = νN

(
A | S2N = 0; ∀n ∈ �1,2N − 1�, Sn > 0

)≤ CKN3/2νN(A),

where for the last inequality we used Proposition 3.2 below. Hence, it is sufficient for us to
show that

(3.12) νN

(
sup

u∈[0,2]

∣∣∣∣ 1

N
ξ�uN� − Mσ(u)

∣∣∣∣> ε

)
≤ 2Ne−2δN .

Since Mσ is 1-Lipschitz, by union bound it is sufficient to check that that

(3.13) sup
n∈�0,2N �

νN

(∣∣ξn − NMσ(n/N)
∣∣> Nε/2

)≤ e−2δN ,

where δ = ε2/130 for all N ≥ N0(ε,K). This is a simple consequence of Hoeffding’s in-
equality (see, e.g., [11], Proposition 1.8) for a sum of bounded independent variables. The
only thing to check is that NMσ(n/N) approximates well the expectation of ξn (i.e., that the
difference is of a smaller order than N ). By Riemann sum approximation, we have

(3.14)
∣∣νN [ξn] − NMσ(n/N)

∣∣= ∣∣∣∣∣
n∑

k=1

tanh
(
hN

k

)− NMσ(n/N)

∣∣∣∣∣≤ σ 2

N
,

which allows to conclude. �

PROPOSITION 3.2. With the definitions above, there exists a constant C = CK such that
for every N ≥ 1 and σ ∈ [0,K]

(3.15)

1

C
√

N

(
σ ∨ N−1/2)2 ≤ νN

(
S2N = 0; ∀n ∈ �1,2N − 1�, Sn > 0

)
≤ C√

N

(
σ ∨ N−1/2)2.

PROOF. First, we show that we can find a constant C such that for every σ ∈ [0,K]
(3.16)

1

C
N−1/2 ≤ νN(S2N = 0) ≤ CN−1/2.
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Our proof of (3.16) follows that of [22], Lemma 11, using Fourier transform. Grouping the
increments of S2N with opposite drifts we obtain (since S2N ∈ 2Z we only need to average
over an interval of length π )

(3.17)

νN(S2N = 0) = 1

π

∫
[−π/2,π/2]

νN

[
eiξS2N

]
dξ

= 1

π

∫
[−π/2,π/2]

N∏
k=1

(
1 − αk,N

(
1 − cos(2ξ)

))
dξ,

where

αk,N = 1 − νN [Xk + X2N−k+1 = 0] = 1

2

(
1 − tanh2(hN

k

))
.

This shows that (3.17) is increasing in σ and we can obtain the upper and lower bounds by
considering the cases σ = K and σ = 0, respectively. This is then a standard computation to
check that there exists a constant C (depending on K) such that for every ξ ∈ [−π/2, π/2]

(3.18) e−CN |ξ |2 ≤ νN

[
eiξS2N

]≤ e−N
C

|ξ |2,

and conclude that (3.16) holds. Using Fourier transform, we can also obtain an upper bound
on νN(SN = x) for every x, that is,

(3.19) νN(SN = x) ≤ CN−1/2.

To show this, we use the fact that S2N − SN is independent from SN and has the same distri-
bution as −SN , which implies

(3.20)
∣∣νN

[
eiξSN

]∣∣2 = νN

[
eiξS2N

]≤ e−N
C

|ξ |2 .

We combine the bound above with the Fourier expression for the distribution of SN

(3.21) νN(SN = x) = 1

π

∫
[−π/2,π/2]

νN

[
eiξ(SN−x)] dξ ≤ 1

π

∫
[−π/2,π/2]

∣∣νN

[
eiξ(SN−x)]∣∣dξ,

to conclude that (3.19) holds. Our second observation uses the FKG inequality which states
that increasing function for the natural partial order on random walk paths (see equation (A.3)
in the Appendix) are positively correlated (see, for instance, [25], Lemma 3.3, for a presen-
tation of FKG inequality in this context) under the measure P(· | SN = x). For every σ > 0,
the density of νN with respect to P is an increasing function and so is 1{∀n∈�1,2N−1�,Sn>0}.
Hence, from the FKG inequality we have

νN

(∀n ∈ �1,2N − 1�, Sn > 0 | S2N = 0
)

≥ P
(∀n ∈ �1,2N − 1�, Sn > 0 | S2N = 0

)= 1

2(2N − 1)
,

(3.22)

where the last equality is easily obtained combining the reflection principle and some basic
combinatorics (see, e.g., [8], Theorem 4.3.1). Thus, there is a constant for which for every
σ ∈ [0,K]
(3.23) νN

(
S2N = 0; ∀n ∈ �1,2N − 1�, Sn > 0

)≥ CN−3/2.
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As a consequence, we have to prove the lower bound in (3.15) only when σ
√

N is large.
Let S̃n := S2N−n − S2N . Note that (S̃n)

N
n=1 and (Sn)

N
n=1 are independent and identically dis-

tributed. Hence, we have

νN

(
S2N = 0; ∀n ∈ �1,2N − 1�, Sn > 0

)
= νN

(
SN = S̃N ; ∀n ∈ �1,N �, Sn, S̃n > 0

)
=

N∑
x=1

νN

(
SN = x; ∀n ∈ �1,N − 1�, Sn > 0

)2
.

(3.24)

To obtain a lower bound, the FKG inequality applied to the measure P(· | SN = x) yields

(3.25) νN

(∀n ∈ �1,N − 1�, Sn > 0 | SN = x
)≥ P

(∀n ∈ �1,N − 1�, Sn > 0 | SN = x
)= x

N
,

where the last equality is the ballot theorem. Now as we have for all σ ∈ [0,K]

(3.26) νN(SN) =
N∑

k=1

tanh
(
hN

k

)≥ cσN and VarνN
(SN) ≤ N,

and thus we obtain that

(3.27) νN

(
SN ∈ {∣∣SN − νN(SN)

∣∣≤ √
2N

})≥ 1/2.

Hence, assuming that cσN ≥ 2
√

2N , combining (3.24) and (3.25), we have

νN

(
S2N = 0; ∀n ∈ �1,2N − 1�, Sn > 0

)
≥ N−2

∑
|x−νN (SN )|≤√

2N

νN(SN = x)2x2

≥ N−2(cσN − √
2N)2

∑
|x−νN (SN )|≤√

2N

νN(SN = x)2.

(3.28)

Using the Cauchy–Schwarz, inequality∑
|x−νN (SN )|≤√

2N

νN(SN = x)2 ≥ νN(|SN − νN(SN)| ≤ √
2N)

#{x ∈ Z : |x − νN(SN)| ≤ √
2N} ≥ 1

2(2
√

2N + 1)
,

so that combing exploiting the fact that cσN − √
2N ≥ cσN/2 we obtain the desired lower

bound

νN

(
S2N = 0; ∀n ∈ �1,2N − 1�, Sn > 0

)≥ c′σ 2N−1/2.

For the upper-bound, we can assume that σ ≤ 1/20 since in all other cases (3.16) is sufficient
to conclude. Our aim is to prove that for every x ≥ 0

(3.29) νN

(∀n ∈ �1,N − 1�, Sn > 0 | SN = x
)≤ 10

(
x + 2

√
N

N
+ σ

)
.

This is trivial when x ≥ N/10, so we may assume that x ≤ N/10. We let νx
N the measure

defined by adding an extra tilt at the end point setting

(3.30)
dνx

N

dνN

(S) = 1

Jx,N

e
3(x+√

N)SN
N with Jx,N = νN

(
e

3(x+√
N)SN

N
)
.

The average of SN under this alternative measure is given by

(3.31) νx
N(SN) =

N∑
k=1

tanh
(
hN

k + 3(x + √
N)

N

)
≥ σN

4
+ 2(x + √

N).
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Since the variance is smaller than N we have in particular νx
N(SN ≥ x) ≥ 1/2 and hence

νN

(∀n ∈ �1,N − 1�, Sn > 0 | SN = x
)

= νx
N

(∀n ∈ �1,N − 1�, Sn > 0 | SN = x
)

≤ νx
N

(∀n ∈ �1,N − 1�, Sn > 0 | SN ≥ x
)≤ 2νx

N

(∀n ∈ �1,N �, Sn > 0
)
.

(3.32)

The equality above is a consequence of the fact that the density (3.30) is constant on the event
SN = x. For the first inequality, we only need to check that the measures νx

N(· | SN ≥ x) and
νx
N(· | SN = x) satisfy Holley’s inequality (i.e., [18], equation (7)) and apply [18], Theorem 6,

to show that νx
N(· | SN ≥ x) stochastically dominates νx

N(· | SN = x) for the natural partial
order defined in (A.3). To bound the last estimate, we can compare νx

N with QN,x,σ under

which S is a simple random walk with constant tilt equal to 3(x+√
N)

N
+ σ , that is, increments

are i.i.d. and

QN,x,σ (S1 = ±1) = e±(
3(x+√

N)
N

+σ)

2 cosh(3(x+√
N)

N
+ σ)

.

From the definition of νx
N in (3.30), we know that

dνx
N

dP
=

∏2N
k=1 ehN

k + 3(x+√
N)

N
Xk∏2N

k=1 2 cosh(3(x+√
N)

N
+ hN

k )

so that (since hN
k ≤ σ for all k) QN,x,σ stochastically dominates νx

N and

(3.33) νx
N

(∀n ∈ �1,N �, Sn > 0
)≤ QN,x,σ

(∀n ∈ �1,N �, Sn > 0
)= 1

N
QN,x,σ (SN ∨ 0).

The equality above is simply a consequence of the fact that by the ballot theorem, for every
y ≥ 0

QN,x,σ

(∀n ∈ �1,N �, Sn > 0 | SN = y
)= y

N
.

Now we have (using Cauchy–Schwarz inequality, the inequality
√

a + b ≤ √
a + √

b and
bounding the variance by N )

QN,x,σ (SN ∨ 0) ≤ (
QN,x,σ

(
S2

N

))1/2 ≤ QN,x,σ (SN) +
√

VarQN,x,σ
(SN)

≤ N tanh
(

3(x + √
N)

N
+ σ

)
+ √

N.

(3.34)

The inequality (3.29) follows by combining (3.32) and (3.33). We are now ready to conclude
our upper bound proof. Recall (3.24), and from (3.19) we have

N∑
x=1

νN

(
SN = x; ∀n ∈ �1,N − 1�, Sn > 0

)2
≤ CN−1/2

N∑
x=1

νN(SN = x)νN

(∀n ∈ �1,N − 1�, Sn > 0 | SN = x
)2

≤ CN−1/2νN

[(
SN + 2

√
N

N
+ σ

)2]
,

(3.35)
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where the second inequality is a direct consequence of (3.29). The upper bound in (3.15)
then follows from our estimates on the variance of SN (3.26) and that on the expectation
since from the explicit expression in (3.26) we can deduce that νN(SN) ≤ σN . �

Now it remains to provide an upper bound on the partition function valid for every σ > 0
and λ > 0. We treat separately the cases F(λ) ≥ G(σ) and G(σ) > F(λ).

3.2. The case when F(λ) ≥ G(σ) and λ > 2. This subsection is devoted to the proof of
the upper bound on the partition function when F(λ) ≥ G(σ) and λ > 2, that is, the following.

PROPOSITION 3.3. When G(σ) ≤ F(λ) and λ > 2, there exists a constant C(λ) > 0,
such that for all N ≥ 1,

(3.36) ZN(λ,σ ) ≤ C(λ) exp
(
2NF(λ)

)
.

Moreover when G(σ) < F(λ), then for every ε > 0 there exists δ > 0 such that for all N

sufficiently large,

(3.37) μN

(
Lmax(ξ) > εN

)≤ e−δN .

When G(σ) = F(λ), for all N ≥ N0(ε) sufficiently large we have

μN

(
Lmax(ξ) ∈ [εN, (1 − ε)N

])≤ e−δN ,

1

C(λ)
√

N
≤ μN

(
Lmax(ξ) > (1 − ε)N

)≤ C(λ)√
N

.
(3.38)

We provide a proof for Proposition 3.3 from the viewpoint of renewal process. For sim-
plicity of notations, for each n ∈ �1,N �, set

K(n) := P
(
S2n = 0; ∀k ∈ �1,2n − 1�, Sk > 0

)
,

K̃(n) := λe−2nF(λ)Zn

(
0,

nσ

N

)
,

(3.39)

where P denotes the distribution of the nearest-neighbor symmetric simple random walk in
Z starting from 0. Note that with this definition, we have from (3.1)

(3.40) λe−2NF(λ)ZN(λ,σ ) =
N∑

k=1

∑
(n1,...,nk)∑k

i=1 ni=N

k∏
i=1

K̃(ni).

The key point here is that with our assumption, K̃(n) almost sums to 1 and thus can be
interpreted as the interarrival law of a renewal process.

LEMMA 3.4. When G(σ) < F(λ), there exists a constant C(λ,σ ) > 0 such that for all
N ≥ 1,

(3.41)
N∑

n=1

K̃(n) ≤ 1 + C(λ,σ )

N
.

When 0 < G(σ) = F(λ), for every given ε ∈ (0, 1
2) there exists a constant C(λ) such that for

all N ≥ N0(ε) sufficiently large,

(3.42)
(1−ε)N∑

n=1

K̃(n) ≤ 1 + C(λ)

N
.
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PROOF OF PROPOSITION 3.3 FROM LEMMA 3.4. By monotonicity in σ , it is sufficient
to treat the case G(σ) = F(λ). For pedagogical reasons, however, we start with the easier
case G(σ) < F(λ) (and a slightly weaker statement see below). We set

(3.43) K̂(n) := K̃(n)/

N∑
m=1

K̃(m)

and let P̂ denote the law of a renewal process τ starting from zero with interarrival law K̂ .
That is an increasing sequence (τk)k≥0 with i.i.d. increments whose distribution is given by
K̂(n). We also consider τ as a subset of N and write {N ∈ τ } for {∃k ≥ 0, τk = N}. We have
from (3.40)

λe−2NF(λ)ZN(λ,σ ) =
N∑

k=1

(
N∑

m=1

K̃(m)

)k ∑
(n1,...,nk)∑k

i=1 ni=N

k∏
i=1

K̂(ni)

≤
(

1 ∨
N∑

m=1

K̃(m)

)N

P̂(N ∈ τ) ≤ eC(λ,σ ),

(3.44)

where the last inequality uses Lemma 3.4 (and the fact that a probability is always smaller
than one). Note that this does not provide a full proof of (3.36) since the constant in the upper
bound does depend on σ .

Let us now treat the case G(σ) = F(λ). For a given ε ∈ (0, 1
2), we redefine

(3.45) K̂(n) := K̃(n)1{n≤(1−ε)N}/
( ∑

1≤m≤(1−ε)N

K̃(m)

)

and update the definition of P̂ accordingly. Now we can make a computation similar to (3.44)
but including possibly one long jump. We obtain (we have put in the factor term eC(λ) which
accounts for the fact that the K̃ do not sum to one)

λe−2NF(λ)ZN(λ,σ ) ≤ eC(λ)

[
P̂(N ∈ τ) + ∑

a,b∈�0,N �
b−a>(1−ε)N

P̂(a ∈ τ)K̃(b − a)P̂(N − b ∈ τ)

]

≤ eC(λ)

(
1 + ∑

a,b∈�0,N �
b−a>(1−ε)N

K̃(b − a)

)
≤ eC(λ)

(
1 + C′(λ)√

N

)
.

(3.46)

To obtain the last inequality, note that as G(σ) = F(λ), by Proposition 3.1 we have

K̃(n) ≤ λC√
N

e2n(G(nσ/N)−G(σ)) ≤ λC√
N

e− 2n(N−n)
N

G(σ),

where the last inequality follows by convexity of G. Summing over a and b this yields the
adequate C′(λ)/

√
N term (since we are on the critical line, σ is a function of λ).

Let us now turn to the proof of the statements concerning the length of the largest excursion
Lmax. When F(λ) > G(σ), repeating (3.44) but summing over ξ displaying a large jump we
have

(3.47) μN

(
Lmax(ξ) > εN

)≤ C(λ,σ )P̂(Lmax(τ ) > εN;N ∈ τ)

e−2NF(λ)ZN(λ,σ )
,

where Lmax(τ ) := max{|τk − τk−1| : τk ≤ N} is the largest inter-arrival before N in the re-
newal sequence. The denominator in the r.h.s. in (3.47) is larger than e−2NF(λ)ZN(λ,0)
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which according to (2.9) is of constant order. It remains to show that the numerator is ex-
ponentially small. We have

(3.48) P̂
(
Lmax(τ ) ≥ εN;N ∈ τ

)≤ N P̂(τ1 ≥ εN) ≤ N

K̃(1)

N∑
n=εN

K̃(n).

Now from (3.7)–(3.9) and the definition of K̃ , we have

(3.49) K̃(n) ≤ λe
2n(G( σn

N
)−F(λ))+ σ2n

4N2 ≤ C(λ,σ )e2n(G(σ)−F(λ))

and hence it decays exponentially, and so does the sum in (3.48).
When F(λ) = G(σ), we proceed similarly and we only have to show that (for the renewal

defined in (3.45))

(3.50) P̂
(
Lmax(τ ) ∈ [εN, (1 − ε)N

];N ∈ τ
)≤ e−δN .

We use (3.49) and G( n
N

σ) ≤ G((1 − ε)σ ) for all n ≤ (1 − ε)N to obtain

(3.51)
P̂
(
τ1 ∈ [εN, (1 − ε)N

])≤ 1

K̃(1)

∑
εN≤n≤(1−ε)N

K̃(n)

≤ C(λ,σ )e−2εN(F(λ)−G((1−ε)σ )).

Finally to estimate (from above and below) the probability of having long jumps when
F(λ) = G(σ) (in that case the value of σ is determined by that of λ) we first observe that
from Proposition 3.1 and (3.36) we have

μN

(
Lmax(ξ) = N

)= ZN(0, σ )

ZN(λ,σ )
≥ 1

C(λ)
√

N
.

For the upper-bound, we observe that in (3.46), the contribution of jumps larger than (1−ε)N

is given by the sum over a and b and this readily implies that for all N ≥ N0(ε)

(3.52) μN

(
Lmax(ξ) > (1 − ε)N

)≤ C(λ)√
N

. �

PROOF OF LEMMA 3.4. Recall the notations K(n) and K̃(n) in (3.39). By [16], equa-
tion (1.6), we know that

(3.53)
∞∑

n=1

λK(n)e−2nF(λ) = 1.

Moreover, there exists a universal constant C0 > 0 such that for all n ≥ 1,

(3.54) C−1
0 n−3/2 ≤ K(n) ≤ C0n

−3/2.

We are going to use different estimates for K̃(n) depending on whether n is small or large.
We adopt the same notation as in the proof of Proposition 3.1, S being a simple random walk
and An being the area between its graph and the x axis (see equation (3.4) and above). For
small values of n, we observe that since An(S) ≤ n2 when S2n = 0 we have

(3.55) K̃(n) = λe−2nF(λ)E
[
e

σAn(S)
N 1{S1>0,...,S2n−1>0,S2n=0}

]≤ λe−2nF(λ)e
σn2
N K(n).
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Using (3.53), and the bounds K(n) ≤ 1 and eu − 1 ≤ 2u for u ≤ 1 we obtain for large values
of N

√
N/σ∑

n=1

K̃(n) − 1 ≤
√

N/σ∑
n=1

(
K̃(n) − λe−2nF(λ)K(n)

)

≤
√

N/σ∑
n=1

λK(n)e−2nF(λ)(e σn2
N − 1

)≤ λ

√
N/σ∑

n=1

e−2nF(λ) 2σn2

N
≤ σC(λ)

N
.

(3.56)

For large values of n we rely on (3.49). When G(σ) < F(λ), we bound G(σn
N

) by G(σ).
Using this we obtain

(3.57)

N∑
n=√

N/σ+1

K̃(n) ≤ ∑
n≥√

N/σ+1

Cλe2n(G(σ)−F(λ))

≤ C′(λ, σ )e−2
√

N/σ(F (λ)−G(σ)) ≤ C′

N
.

When G(σ) = F(λ), we bound G( n
N

σ) by G((1 − ε)σ ) for n ≤ (1 − ε)N which is sufficient
to conclude. �

3.3. The case G(σ) > F(λ). Our objective in this section is to prove the following
proposition.

PROPOSITION 3.5. If G(σ) > F(λ), then there exists a constant C(λ,σ ) such that for
every N we have

(3.58) ZN(λ,σ ) ≤ C(λ,σ )√
N

e2NG(σ).

On top of this, for a given ε > 0, there exists δ > 0 such that for all N sufficiently large we
have

(3.59) μ
λ,σ
N

(
Lmax(ξ) ≤ (1 − ε)N

)≤ e−δN .

PROOF. Observe that if 0 ≤ λ ≤ λ′, we have

(3.60)
ZN(λ,σ ) ≤ ZN

(
λ′, σ

)
,

μ
λ,σ
N

(
Lmax(ξ) ≤ (1 − ε)N

)≤ μ
λ′,σ
N

(
Lmax(ξ) ≤ (1 − ε)N

)
,

where the last inequality can be proved by FKG inequality (cf. [25], Lemma 3.3). Therefore,
it is sufficient to prove the statements for λ > 2. To prove (3.58), we fix ε0 := ε0(λ, σ ) > 0
(not related to the ε in (3.59)) sufficiently small such that

(3.61) F(λ) ≤ G
(
(1 − ε0)σ

)
.

From Lemma 3.4, we have

(3.62)
ε0N∑
m=1

K̃(m) ≤ 1 + C(λ,σ )

N
.

In order to estimate the partition function, we are going to split the trajectories according to
where the position of jumps larger than ε0N away from the x-axis are located. Starting with
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(3.1), letting l = (l1, . . . , lk) denote the lengths of those jumps and m = (m0, . . . ,mk) the
spaces between those jumps, we have (similarly to (3.44))

ZN(λ,σ ) =
∞∑

k=0

λk−1
∑

(l,m)∈A(ε0)

N,k

k∏
i=0

Z̃mi

k∏
j=1

Zlj

(
0,

σ lj

N

)

≤
(

1 ∨
ε0N∑
m=1

K̃(m)

)N ∞∑
k=0

λk−1
∑

(l,m)∈A(ε0)

N,k

k∏
i=0

e2miF(λ)P̂(mi ∈ τ)

×
k∏

j=1

Zlj

(
0,

σ lj

N

)
,

(3.63)

where

(3.64)

A(ε0)
N,k :=

{[
(lj )

k
j=1, (mi)

k
i=0
] ∈ Z

2k+1+ :

∀j ∈ �1, k�, lj ≥ ε0N and
k∑

i=0

mi +
k∑

j=1

lj = N

}

and for m ≥ 1 (Z̃0 = 1)

(3.65) Z̃m :=
m∑

k=1

∑
n1,...,nk≤ε0N∑k

i=1 ni=m

k∏
i=1

K̃(ni) ≤
(

1 ∨
ε0N∑
n=1

K̃(n)

)m

P̂(m ∈ τ).

Bounding above the probabilities by 1, using (3.62) and the fact that the only nonzero terms
are k ≤ ε−1

0 we obtain that

(3.66)

ZN(λ,σ ) ≤ eC(λ,σ )

ε−1
0∑

k=0

λk−1
∑

(l,m)∈A(ε0)

N,k

e
∑k

i=0 2miF(λ)
k∏

j=1

Zlj

(
0,

σ lj

N

)

=: eC(λ,σ )

ε−1
0∑

k=0

λk−1ZN,k.

We are going to show first that the contribution of k = 0 and k ≥ 2 in the above sum are small.
We have ZN,0 = e2NF(λ). For k ≥ 2, we simply use the fact that #AN,k ≤ N2k+1 and (3.2) to
obtain that

(3.67) ZN,k ≤ Ck
σN2k+1e

∑k
i=0 2miF(λ)+∑k

j=1 2ljG(
lj σ

N
) ≤ Ck

σN2k+1e2NG((1−ε0)σ ),

where the second inequality uses only the fact that lj /N ≤ (1 − ε0) and the assumption in
(3.61). Finally for the case k = 1, we have

ZN,k ≤ ∑
m0,m1

m0+m1<N(1−ε0)

e2(m0+m1)F (λ)ZN−m0−m1(0, σ )

≤ Ce2NG(σ)
∑

m0,m1
m0+m1<N(1−ε0)

e−2(m0+m1)[G(σ)−F(λ)]
√

N − m0 − m1
,

(3.68)

and we conclude that the last sum is bounded above by CN−1/2 since F(λ) < G(σ).
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Let us now prove the upper bound on μN(Lmax(ξ) ≤ (1 − ε)N). Since we have
ZN(λ,σ ) ≥ ZN(0, σ ) and already proved a lower bound for ZN(0, σ ) in (3.2) it is sufficient
to bound ZN(λ,σ )μN(Lmax(ξ) ≤ (1 − ε)N) from above. Repeating the previous computa-
tion but adding a restriction, we obtain as for (3.66)

(3.69)

ZN(λ,σ )μN

(
Lmax(ξ) ≤ (1 − ε)N

)
≤ eC(λ,σ )

ε−1
0∑

k=0

λk−1
∑

(l,m)∈A(ε0,ε)

N,k

e
∑k

i=0 2miF(λ)
k∏

j=1

Zlj

(
0,

σ lj

N

)
,

where

A(ε0,ε)
N,k :=

{[
(lj )

k
j=1, (mi)

k
i=0
] ∈ Z

2k+1+ :

∀j ∈ �1, k�,
lj

N
∈ [ε0, (1 − ε)

]
and

k∑
i=0

mi +
k∑

j=1

lj = N

}
.

Now it has been already shown (in (3.67) and above) that the contribution of k = 0 and k ≥ 2
in the sum (3.69) (even without the restriction li ≤ (1 − εN)) is smaller than e2N(G(σ)−δ) for
some δ > 0. It remains to to estimate the contribution corresponds to case k = 1. We have∑

m0,m1
εN≤(m0+m1)≤(1−ε0)N

e2(m0+m1)F (λ)ZN−m0−m1

(
0, σ

N − (m0 + m1)

N

)

≤ CσN3/2e2N(G((1−ε)σ )∨F(λ)) ≤ e2N(G(σ)−δ),

(3.70)

where the last inequality is valid for N sufficiently large, and we used that (e.g., from Propo-
sition 3.1) for n ≤ (1 − ε)N

Zn

(
0,

σn

N

)
≤ Cσe2nG(n σ

N
) ≤ Cσe2nG((1−ε)σ ). �

3.4. Proof of Proposition 2.1 and Theorem 2.4. Let us first check that the combination
of the previous statements yields Proposition 2.1. Proposition 3.3 and Proposition 3.5 give
the desired upper bound on the partition function. Concerning the lower bound, we have by
monotonicity for every λ,σ ≥ 0

(3.71) ZN(λ,σ ) ≥ max
(
ZN(λ,0),ZN(0, σ )

)
.

Thus the lower bound in (2.15) is a direct consequence of (3.71) and Proposition 3.1, and the
lower bound in (2.16) is an implication of (3.71) and (2.9).

Let us now turn to Theorem 2.4 which requires a bit more work. Since ξx > εN implies
Lmax(ξ) > εN , the statements in (2.21) is a consequence of (3.37). The statements in (2.21)
and (2.22) are proved in Proposition 3.3 and we are left with the proof of (2.20) and (2.23).
We focus on (2.20), the proof of (2.23) follows along the same line, and we leave it to the
reader. Since we have already proven the statement for the case λ = 0 in Proposition 3.1,
our strategy is to reduce ourselves to this case, by conditioning on the size of the unpinned
region appearing in bulk of the system (which we have proved to be of size N(1 − o(1)) (cf.
Proposition 3.1 and Proposition 3.5). Let us set

(3.72)
L(ξ) := sup{k ≤ N : ξk = 0},
R(ξ) := inf{k ≥ N : ξk = 0}.
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We fix ε′ > 0 sufficiently small in a way that depends on ε and not on N (we will mention
the requirement along the proof). We have

μ
λ,σ
N

(
sup

u∈[0,2]

∣∣∣∣ 1

N
ξ�uN� − Mσ(u)

∣∣∣∣> ε

)

≤ max
�,r∈�0,2N �

r−�≥2N(1−ε′)

μ
λ,σ
N

(
sup

u∈[0,2]

∣∣∣∣ 1

N
ξ�uN� − Mσ(u)

∣∣∣∣> ε
∣∣∣ L(ξ) = �,R(ξ) = r

)

+ μ
λ,σ
N

(
Lmax(ξ) ≤ (

1 − ε′)N).
(3.73)

The second term is exponentially small by Proposition 3.5. Concerning the first term in the
r.h.s. of (3.73), we observe that for ε′ sufficiently small we have with probability one

∀s ∈ [0,2�] ∪ [2r,2N ],
∣∣∣∣ 1

N
ξs − Mσ(s/N)

∣∣∣∣≤ ε,

simply because both functions are 1/N -Lipschitz. Setting N̄ = (r − �)/2 and σ̄ := r−�
2N

σ we

only have to look at the middle part of the path which after conditioning has distribution μ
0,σ̄

N̄
.

Hence, we need to estimate

(3.74) μ
0,σ̄

N̄

(
sup

u∈[0,2]

∣∣∣∣ 1

N̄
ξ�uN̄� − N

N̄
Mσ

(
�

N̄
+ uN̄

N

)∣∣∣∣> εN

N̄

)
.

Choosing ε′ small we can ensure that

(3.75) sup
u∈[0,2]

∣∣∣∣N
N̄

Mσ

(
�

N̄
+ uN̄

N

)
− Mσ̄ (u)

∣∣∣∣≤ ε/2

and we obtain that the term in the max in the r.h.s of (3.73) is smaller than

(3.76) μ
0,σ̄

N̄

(
sup

u∈[0,2]

∣∣∣∣ 1

N̄
ξ�uN̄� − Mσ̄ (u)

∣∣∣∣> ε/2
)

which is exponentially small from Proposition 3.1 (recall that N̄ ≥ N/2).

4. Bottleneck identification and lower bound on the relaxation time.

4.1. Heuristics. In order to understand Theorem 2.7, let us explain heuristically what
makes the systems mixing slowly when E(λ,σ ) > 0. For this, we have to describe the most
likely pattern that the system uses to relax to equilibrium.

We start with the case F(λ) ≥ G(σ), which might be the more illustrative. Since at equi-
librium the interface is pinned, the configuration which is the further away from the x-axis
(i.e., ξmax

x = x ∧ (2N − x)) should be the furthest away from equilibrium. In order to reach
equilibrium, ξ needs to pin itself entirely on the wall, and the most likely way to do so is
to shrink the unpinned region, “continuously” (i.e., in a way that appears continuous in the
large N limit) moving the extremities of the unpinned region inwards. Now we turn to the
case G(σ) > F(λ) where the pattern should be simply the opposite: we start from the bottom-
most configuration defined by ξmin

x = 1{x is odd} for x ∈ �0,2N �) and try to grow an unpinned
bubble from the bulk of the interface until it reaches one of the extremities.

Now we discuss the heuristic when E > 0 (c.f. Figure 6). Following the strategy above,
for any β ∈ (0,1) the dynamics must display at some point an unpinned region of length
2βN(1 + o(1)) and a pinned region of length 2(1 − β)N(1 + o(1)). From Proposition 3.1,
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we can heuristically infer that the contribution to the partition function of configurations with
an unpinned region of size 2βN is, on the exponential scale, of order

exp
(
2N

[
βG(βσ) + (1 − β)F (λ)

])
.

Hence in order to understand relaxation to equilibrium, we need to study the function

β �→ −βG(βσ) − (1 − β)F (λ)

corresponding to the effective energy for a system constrained on having a large unpinned
region of size 2βN . This function admits a local maximum inside the interval [0,1] if and
only if the equation G(βσ) + βσG′(βσ) = F(λ) admits a solution in (0,1) which in turn
occurs if and only if G(σ) + σG′(σ ) > F(λ).

If G(σ) + σG′(σ ) ≤ F(λ), when diminishing β from 1 to 0, the effective energy
−βG(βσ) − (1 − β)F (λ) only decreases (see Figure 6) indicating that the system should
mix rapidly.

If G(σ) + σG′(σ ) > F(λ), on the contrary, in order for β to go from 1 to 0 (if F(λ) ≥
G(σ)) or 0 to 1 (if F(λ) < G(σ)), it needs to overcome an energy barrier. The height of
the energy barrier to overcome is exactly 2NE(λ,σ ) (see Figure 6) which yields a heuristic
justification for having a mixing time of order e2NE(λ,σ ).

Transforming this heuristic into a rigorous lower bound on the mixing time is the eas-
ier part of the argument. Indeed the value β∗ which maximizes the effective energy should
correspond to a bottleneck in the system in the sense given in [29], Section 7.2. Getting a
lower bound on the mixing time from the bottleneck ratio is then a very standard and direct
computation (cf. [29], Theorem 7.4).

The upper-bound is more delicate. The strategy above assumes that only one unpinned
region is formed and that the size of that unpinned region is the only relevant parameter for
the estimate of the relaxation time. In order to obtain an upper bound, without proving these
claims directly, we will use a set of techniques (induction, chain reduction, path-method. . . )
which allows to circumvent these issues.

4.2. Lower bound on the relaxation time. The goal of this subsection is to prove the
following result.

PROPOSITION 4.1. Let us assume that σ > 0. Then if E(λ,σ ) > 0, then for all N ≥ 1,
we have

(4.1) T N
rel(λ, σ ) ≥ c(λ,σ )

N2 exp
(
2NE(λ,σ )

)
,

where E(λ,σ ) is defined in (2.25). Moreover, if E(λ,σ ) = 0, then

(4.2) T N
rel(λ, σ ) ≥ c(λ,σ )N.

To obtain (4.1), we simply evaluate the minimized quantity (2.7) for a function f which is
the indicator of our bottleneck event f := 1E1

N
where E1

N is defined in (2.32). To estimate the

Dirichlet form of this function we need to introduce the internal boundary of E1
N defined by

(4.3) ∂E1
N := {

ξ ∈ E1
N : ∃x ∈ �1,2N − 1�, ξx /∈ E1

N

}
,

and set for any event B ⊂ �N

(4.4) Z(B) = Zλ,σ (B) := μN(B)ZN(λ,σ ) = ∑
ξ∈B

2−2NλH(ξ) exp
(

σ

N
A(ξ)

)
.

The most important computation in this section is the estimate of the relative weight of each
of the E i

N and of the boundary separating them.
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PROPOSITION 4.2. If E(λ,σ ) > 0, then there exists a constant C = C(λ,σ ) such that
for every N ≥ 1

C−1 ≤ Z
(
E1

N

)
e−2NF(λ) ≤ C,

C−1 ≤ N1/2Z
(
E2

N

)
e−2NG(σ) ≤ C.

(4.5)

Furthermore, we have

(4.6)
1

C
≤ Z(∂E1

N)√
Ne2β∗NG(β∗σ)+2N(1−β∗)F (λ)

≤ C.

PROOF OF PROPOSITION 4.1. We first deal with the case E(λ,σ ) > 0. By definition, we
know that VarμN

(f ) = μN(E1
N)μN(E2

N) and E(f ) ≤ 2NμN(∂E1
N), where the last inequality

uses the fact that
∑

ξ ′∈�N
rN(ξ, ξ ′) ≤ 2N for all ξ ∈ �N . Thus, we have

(4.7) T N
rel(λ, σ ) ≥ μN(E1

N)μN(E2
N)

2NμN(∂E1
N)

= Z(E1
N)Z(E2

N)

2NZ(∂E1
N)ZN(λ,σ )

.

Therefore, by Proposition 4.2 and Proposition 2.1 we have

(4.8) T N
rel(λ, σ ) ≥ 1

CN2 e2NE(λ,σ ).

We move to the case E(λ,σ ) = 0 and adopt the strategy of [5], Proposition 5.1. We plug
the test function fa(ξ) = exp( a

N

∑2N
x=1 ξx) with a > 0 in (2.7) and estimate the Dirichlet form

for fa . Since |Qx(fa) − fa| ≤ C
N

fa for all x ∈ �1,2N �, we have

E(fa) ≤ 2C2

N
μN

(
f 2

a

)
,

and then

(4.9) T N
rel(λ, σ ) ≥ μN(f 2

a ) − μN(fa)
2

2C2

N
μN(f 2

a )
= N

2C2

(
1 − ZN(λ,σ + a)2

ZN(λ,σ )ZN(λ,σ + 2a)

)
.

We choose the constant a such that G(σ +a) ≤ F(λ) < G(σ +2a). Then by Proposition 2.1,
the r.h.s. of (4.9) is larger than or equal to

N

2C2

(
1 − exp(−cN)

)
,

which allows us to conclude. �

PROOF OF PROPOSITION 4.2. We assume that E(λ,σ ) > 0 and recall that β∗ is the
unique solution of (2.26). We have in particular G(σβ∗) < F(λ). Using this observation,
using the definition (3.39) we have from the proof of Lemma 3.4 that for every N ≥ σ

(4.10)
β∗N∑
n=1

K̃(n) ≤ 1 + σC(λ)

N
.

Indeed (3.56) yields the right-bound for the summation over 1 ≤ n ≤ √
N/σ , it is then suffi-

cient to replace N by β∗N in (3.57) and use the first inequality in (3.49) to obtain

(4.11)
β∗N∑

n=√
N/σ+1

K̃(n) ≤
β∗N∑

n=√
N/σ+1

λe
2n[(G(β∗σ)−F(λ))+ σ2

N2 ] ≤ C′(λ)e−c(λ)
√

N/σ .
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For the last inequality above, we simply have observed that σβ∗ depends only on λ. Now we
start with a decomposition in (3.1) and proceed as in the proof of Proposition 3.3 to obtain

(4.12)

Z
(
E1

N

)=∑
k≥1

∑
n1,...,nk∑k
i=1 ni=N

ni≤β∗N

λk−1
k∏

i=1

Zni

(
0,

σni

N

)

≤ λ−1e2NF(λ)

(
1 + C

N

)N

P̂[N ∈ τ̂ ] ≤ C′e2NF(λ),

where τ̂ is a renewal with interarrival law

(4.13) K̂(n) = K̃(n)1{n≤β∗N}/
(β∗N∑

m=1

K̃(m)

)
.

For the lower bound, observe that by monotonicity for any ε > 0 (hence in particular for
ε = β∗(λ, σ ))

Zλ,σ (Lmax ≤ εN) ≥ Zλ,0(Lmax ≤ εN) = μ
λ,0
N (Lmax ≤ εN)ZN(λ,0),

and we can then use (2.9) and (3.37) (in the easier case σ = 0) to conclude.
For Z(E2

N) we first notice that by Proposition 3.1, we have

(4.14) Z
(
E2

N

)≥ ZN(0, σ ) ≥ 1

Cσ

√
N

e2NG(σ)

and thus we can focus on the proof of the upper bound.
We proceed as for (3.63), but with a threshold at size β∗N for big jumps. We have

(4.15) Z
(
E2

N

)≤ (
1 + C

N

)N ∞∑
k=1

λk−1
∑

(l,m)∈A(β∗)
N,k

k∏
i=0

e2miF(λ)P̂(mi ∈ τ)

k∏
j=1

Zlj

(
0,

σ lj

N

)

with A(β∗)
N,k defined in (3.64). Let us first control the contribution to the sum of the k = 1 term.

Using (3.2) it is bounded above by

(4.16)

Cσ

(
Nβ∗)−1/2 ∑

m0,m1
m0+m1≤N(1−β∗)

e2(N−m0−m1)G(σ(1−m0+m1
N

))+2(m0+m1)F (λ)

≤ C(λ,σ )N−1/2e2NG(σ),

where the last inequality is a consequence of the fact that when m0 + m1 ≤ N(1 − β∗) then

(N − m0 − m1)G

(
σ

(
1 − m0 + m1

N

))
+ (m0 + m1)F (λ)

≤ NG(σ) − (m0 + m1)
G(σ) − β∗G(σβ∗) − (1 − β∗)F (λ)

1 − β∗ ,

(4.17)

which itself derives from convexity (in R+) of u �→ uG(σu) + (1 − u)F (λ). For any k ≥ 2
(and smaller than (β∗)−1) a similar computation gives us that the kth term in the inequality
is smaller than

N2ke2NḠ(σ,k) with Ḡ(σ, k) := sup
β1,...,βk∈(β∗,1)∑

βi≤1

(
k∑

i=1

βiG(σβi) +
(

1 −
k∑

i=1

βi

)
F(λ)

)
.

The result then follows from the fact that Ḡ(σ, k) < G(σ).
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Now let us move to the case of Z(∂E1
N). If ξ ∈ ∂E1

N , then it means that there is x ∈ �0,N �

such that ξ2x = 0 and ξ2x ∈ E2
N . Hence if a and b are such that a < x < b and, ξ2a = ξ2b = 0

and ξ2y > 0 for y ∈ �a, b� \ {x} then one must have

(4.18) max(b − x, x − a) ≤ Nβ∗ and b − a > Nβ∗.

Decomposing over all possible values for a, b and x we find

Z
(
∂E1

N

)≤ λ3
∑

a,b∈�0,N �
β∗N<b−a≤2β∗N

a+β∗N∑
x=b−β∗N

× Z
(N)

a (λ, σ )Zx−a

(
0,

(x − a)σ

N

)
Zb−x

(
0,

(b − x)σ

N

)
Z

(N)

N−b(λ, σ ),

(4.19)

where Z
(N)

m (σ,λ) corresponds to a partition function with a constraint of having no large
jumps:

(4.20) Z
(N)

m (λ,σ ) :=∑
k≥1

∑
n1,...,nk∑k
i=1 nk=m

ni≤β∗N

λk−1
k∏

i=1

Zn

(
0,

σni

N

)
.

From the upper bound on Z(E1
N), we have Z

(N)

m (σ,λ) ≤ Ce2mF(λ). Using the upper bound in
(3.2) and observing that at least one of the two lengths (x − a) or (b − x) is of order N we
obtain that

a+β∗N∑
x=b−β∗N

Zx−a

(
0,

(x − a)σ

N

)
Zb−x

(
0,

(b − x)σ

N

)

≤ CN−1/2
2β∗N−b+a∑

y=0

e2(β∗N−y)G(σ(β∗− y
N

))+2(b−a−β∗N+y)G(σ(
(b−a+y)

N
−β∗))

≤ 2CN−1/2e2β∗NG(σβ∗)+2(b−a−Nβ∗)G(σ( b−a
N

−β∗))

×
(2β∗N−b+a)/2∑

y=0

e
4y

(2β∗N−b+a)
[(b−a)G(

σ(b−a)
2N

)−β∗NG(σβ∗)−(b−a−Nβ∗)G(σ( b−a
N

−β∗))]
,

(4.21)

where in the last inequality we used the fact that the second half of the sum is equal to the
first half and the convexity of the function

u �→ (
β∗ − u

)
G
(
σ
(
β∗ − u

))+ (
b − a

N
− β∗ + u

)
G

(
σ

(
b − a

N
− β∗ + u

))

on [0, (2β∗N − b + a)/2N ]. Now if (b − a) ≤ 3β∗N/2, the sum in the last line of (4.21) is
bounded above by a constant (since we are summing something smaller than e−c(λ,σ )y ). If
(b−a) > 3β∗N/2, we bound the sum above by N . Going back to (4.19), we obtain altogether
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that

Z(∂E1
N)

e2β∗NG(β∗σ)+2N(1−β∗)F (λ)

≤ CN−1/2
∑

a,b∈�0,N �
β∗N<b−a≤2β∗N

e2N[( b−a
N

−β∗)(G((
(b−a)

N
−β∗)σ )−F(λ))]+(logN)1{(b−a)>3β∗N/2}

≤ C
√

N

β∗N∑
k=1

e2k(G( kσ
N

)−F(λ))+(logN)1{k>3β∗N/2} ≤ C′√N,

(4.22)

where the last inequality follows from the fact that G(β∗σ)−F(λ) < 0. To obtain the convert
bound, we just need to consider the contribution to the sum of a, b, x such that x = a + β∗N
and b = x + 1, and to avoid double counting, we impose the constraint that there is no jump
of size larger than Nβ∗/2 outside of (a, b). Therefore, let a′ := (1 − β∗)N − a − 1 and we
have

Z
(
∂E1

N

)≥ Zβ∗N
(
0, σβ∗) (1−β∗)N−1∑

a=0

Za(λ,0)μλ,0
a

(
Lmax ≤ β∗N

2

)

× Za′(λ,0)μ
λ,0
a′

(
Lmax ≤ β∗N

2

)
≥ 1

C

√
Ne2N(β∗G(σβ∗)+(1−β∗)F (λ)),

(4.23)

where the last inequality follows from Proposition 2.1 and (2.21). �

5. Upper bounds on the relaxation time.

5.1. Stating the results. Let us state here the two main statements that we are going to
prove in this section and which, together with Proposition 4.1, provides a complete proof of
Theorem 2.7. The proof of these propositions will also provide most of the ingredients re-
quired to prove the metastable behavior of the system when E(λ,σ ) > 0, that is Theorem 2.8.

We first prove that the system mixes in polynomial time when the activation energy is zero.

PROPOSITION 5.1. Given λ > 2, there exist constants C(λ) and C̃(λ) such that for all σ

satisfying E(λ,σ ) = 0, for all N ≥ 1 we have

(5.1) T N
rel(λ, σ ) ≤ C(λ)NC̃(λ).

The second result of this section shows that when the activation energy of the system
E(λ,σ ) is positive the lower bound proved in the previous section (i.e., Proposition 4.1) is
sharp up to polynomial correction.

PROPOSITION 5.2. If E(λ,σ ) > 0, for all N ≥ 1 we have

(5.2) T N
rel(λ, σ ) ≤ C(λ,σ )NC̃(λ,σ ) exp

(
2NE(λ,σ )

)
.

5.2. The chain decomposition strategy. In order to obtain upper bounds on the relaxation
times T N

rel(λ, σ ), we are going to rely repeatedly on a decomposition technique developed
in [21]. Let us state here this decomposition in a general framework. We consider a generic
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continuous-time reversible and irreducible Markov chain on a finite state space S, with gen-
erator L given by

(5.3) (Lϕ)(x) := ∑
y∈�

r(x, y)
(
ϕ(y) − ϕ(x)

)
,

where r are the transition rates. We let π and gap denote respectively, the equilibrium measure
and the spectral gap associated with this Markov chain.

We consider also (Si)i∈I a partition of S indexed by an arbitrary index set I and let Li

to be the generator of the restricted chain with state space Si (it corresponds to the original
chain conditioned to remain in Si at all time). It is defined by

(5.4) (Lif )(x) := ∑
y∈Si

r(x, y)
(
f (y) − f (x)

)
for f : Si → R and x ∈ Si . We let gapi denote the spectral gap associated with Li . Note that
the probability measure πi defined by πi(A) = π(A)/π(Si) for A ⊂ Si is reversible for Li .
We let gapi denote the spectral gap of Li . Finally, we define the reduced chain on I with
generator L̄ given by (for φ : I →R)

(5.5) (L̄φ)(i) :=∑
j∈I

r̄(i, j)
(
ϕ(j) − ϕ(i)

)
where r̄(i, j) := ∑

x∈Si,y∈Sj

πi(x)r(x, y), i, j ∈ I.

The probability π̄ (i) = π(Si) for all i ∈ I is reversible for L̄. We let gap denote its spectral
gap. Note that the reduced chain does not correspond to the projection of the original chain on
I (which is in general a non-Markovian process) but to the projection of a modified process
that would be resampled using the probability πi between any two consecutive steps. Finally,
we let

(5.6) γ̄ := max
i∈I

max
x∈Si

∑
y∈S\Si

r(x, y)

denote the maximal exit rate from one of the Sis. The following proposition is the continuous
time adaptation of [21], Theorem 1. This result permits to control the spectral gap of L,
provided that one has some control over that of the reduced chain and those of the restricted
chains.

PROPOSITION 5.3 ([4], Proposition 2.1). With the notation introduced above we have

(5.7) gap ≥ min
(

gap

3
,

gap mini∈I gapi

gap + 3γ̄

)
.

5.3. The induction strategy for E = 0. The main idea of the proof here is to use a decom-
position strategy, where the partition of the states is done according to the position of L(ξ)

and R(ξ) whose definition (given in (3.72)) we recall

(5.8)
L(ξ) := sup{k ≤ N : ξk = 0},
R(ξ) := inf{k ≥ N : ξk = 0}.

We want to apply Proposition 5.3 with the partition of �N given by �N = �(x,y)∈ϒN
�(x,y)

ϒN := {
(x, y) : x, y ∈ �0,N �,2x ≤ N ≤ 2y

}
,

�(x,y) := {
ξ ∈ �N : L(ξ) = 2x and R(ξ) = 2y

}
.

(5.9)

We need to estimate the spectral gap for the reduced chain on ϒN and for each of the restricted
chain on �(x,y). Roughly speaking, the idea is that when G(σ) + σG′(σ ) < F(λ), both



METASTABILITY FOR EXPANDING BUBBLES ON A STICKY SUBSTRATE 3437

L(ξ) and R(ξ) display a uniform drift towards the center and this makes the spectral gap
bounded away from below (like for a random walk with drift). The very sharp equilibrium
estimates proved in Section 3 allows us to make this rigorous in Proposition 5.6. Now the
chain restricted to �(x,y) is in fact a product chain since the respective restrictions of ηt to the
intervals �0,2x�, �2x,2y� and �2y,2N � are independent Markov chains. The spectral gap
gap(x,y) of the restricted chain is thus given by the minimum of these three chains.

The restriction to the interval �2x,2y� is a variant of the weakly asymmetric exclusion
process whose mixing properties have been studied in details in [24]. Its spectral gap is well
understood and scales like (y − x + 1)−2 (see Proposition 5.5 below). The restrictions to

�0,2x� and �2y,2N � on the other hand are simply the same as the original chain but on a
smaller interval. This forces us to proceed by induction. Our main task is going to be the
proof of the following statement. We let σ0(λ) be such that

(5.10) G(σ0) + σ0G
′(σ0) = F(λ).

PROPOSITION 5.4. For any σ1 < σ0 there exists a constant c(λ,σ1) such that for any
σ ≤ σ1 and any N ≥ 2 we have

(5.11) gapN(λ,σ ) ≥ c(λ,σ1) min
n≤N/2

(
gapn

(
λ,

nσ

N

)
, (N/2)−2

)
.

We also have for all σ ≤ σ0

(5.12) gapN(λ,σ ) ≥ c(λ)N−4 min
n≤N/2

(
gapn

(
λ,

nσ

N

)
, (N/2)−2

)
.

PROOF OF PROPOSITION 5.1 USING PROPOSITION 5.4. We start by setting (using the
constant c(λ,σ0/2) given by Proposition 5.4)

(5.13) C̃(λ) := 2 ∨ log2

(
1

c(λ,σ0/2)

)
+ 4.

We are going to prove by induction that for every N ≥ 2 the property UN defined as

(5.14) ∀σ ∈ [0, σ0/2], gapN(λ,σ ) ≥ N−C̃(λ)+4

is satisfied. When N = 2, we can see that #�2 = 2, and gap2(λ, σ ) = 1 for all σ ∈ [0, σ1]
using (2.7). Now given N ≥ 3 and assuming that Un is valid for all n ≤ N − 1, we want to
prove UN . Therefore, by (5.11) and the induction hypothesis, we have

(5.15) gapN(λ,σ ) ≥ c(λ,σ0/2)

(
N

2

)−C̃(λ)+4
≥ N−C̃(λ)+4,

which concludes the induction proof. Now when σ ∈ (σ0/2, σ0] we apply (5.12) to obtain

(5.16) gapN(λ,σ ) ≥ c(λ)(N/2)−C̃(λ)

and this concludes our proof. �

5.4. Proof of Proposition 5.4. As discussed above the key point here is to apply Propo-
sition 5.3. However, if we apply it directly the factor (5.6) corresponding to the partition
�N = �(x,y)∈ϒN

�(x,y) is much too large. More specifically it is of order N , and applying
Proposition 5.3 directly would make us lose a factor N in (5.11) which, after the induction,
would turn into a factor exp((logN)2) in Proposition 5.1. Hence, we perform a small modi-
fication to the chain which is crucial to obtain a polynomial bound on the relaxation time.
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Our modification simply constrains L(ξ) and R(ξ) to make only nearest neighbor move.
Recalling the definition of rN in (2.5), this corresponds to consider the Markov chain with
generator

L∗
N(f )(ξ) := ∑

ξ ′∈�N

r∗
N

(
ξ, ξ ′)(f (ξ ′)− f (ξ)

)
,

where

(5.17) r∗
N

(
ξ, ξ ′) := rN

(
ξ, ξ ′)1{|L(ξ)−L(ξ ′)|≤2 and |R(ξ)−R(ξ ′)|≤2}.

Note that L∗
N is irreducible and reversible with respect to the same measure μ

λ,σ
N and thus

for this reason has a smaller spectral gap than the original chain. Letting gap∗
N be the spectral

gap associated with this chain, we are going to prove that for σ ≤ σ1

(5.18) gap∗
N(λ,σ ) ≥ c(λ,σ1) min

n≤N/2

(
gapn

(
λ,

nσ

N

)
,N−2

)
and similarly for (5.12).

We apply Proposition 5.3 for L∗
N with the partition �N = �(x,y)∈ϒN

�(x,y). We let
gap(x,y)(λ, σ ) and gapN(λ,σ ) be the spectral gaps of the corresponding restricted and re-
duced chains. Now note that for our modified chain there are (at most) 4 transitions that
change the value of L(ξ) or R(ξ) and thus we have

(5.19) max
(x,y)∈ϒN

max
ξ∈�(x,y)

∑
ξ ′∈�N\�(x,y)

r∗
N

(
ξ, ξ ′)≤ 4.

As a consequence, we have

(5.20) gap∗
N(λ,σ ) ≥ min

(
gapN(λ,σ )

3
,

gapN(λ,σ )minϒN
gap(x,y)(λ, σ )

gapN(λ,σ ) + 12

)
.

Now from the discussion of the previous section, we have

(5.21) gap(x,y)(λ, σ ) = gapx

(
λ,

xσ

N

)
∧ gapN−y

(
λ,

σ (N − y)

N

)
∧ gapy−x

(
0,

(y − x)σ

N

)
,

and as a consequence

(5.22) min
ϒN

gap(x,y)(λ, σ ) ≥
(

min
n≤N

gapn

(
0,

nσ

N

))
∧
(

min
n≤N/2

gapn

(
λ,

nσ

N

))
.

To conclude the proof we need to rely on two estimates. The first one concerns the spectral
gap of the unpinned dynamics, and can be obtained via a simple comparison with the uncon-
strained ASEP (see [23], Theorem 1, for the identification of the spectral gap in this case).
The proof is included in Appendix for completeness.

PROPOSITION 5.5. For any n ≤ N and for any σ > 0 we have

(5.23) gapn(0, σ ) ≥ 2 sin
(

π

4N

)2
.

The second one concerns the reduced chain. This chain informally can be thought as de-
scribing the evolution of a large unpinned zone present in the middle of the system. As re-
marked in Section 4.1, when E(λ,σ ) = 0, the corresponding effective potential does not
display several local minima, and thus avoids any bottlenecking. Combining this fact with
the relatively simple geometry of ϒN we obtain the following estimates.
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PROPOSITION 5.6. We recall the definition of σ0 in (5.10). For σ1 < σ0, There exists a
constant C(λ,σ1) such that for every N , every σ ∈ [0, σ1]
(5.24) gapN(λ,σ ) ≥ C(λ,σ1).

Also there exists a constant C(λ) such that for all σ ≤ σ0

(5.25) gapN(λ,σ ) ≥ C(λ)N−4.

REMARK 5.7. The exponent 4 appearing in (5.25) is not optimal and a closer analysis
would show that the spectral gap is of order N−1 in that case. We have chosen to aim for a
simpler proof since we do not aim for an explicit exponent in Proposition 5.1.

PROOF OF PROPOSITION 5.6. Consider the order on ϒN which is induced by the inclu-
sion order for the interval [x, y] that is,

(5.26)
(
x′, y′)� (x, y) if x′ ≤ x and y′ ≥ y.

We are in fact going to prove a lower bound on the Cheeger constant associated with the
dynamics, which is defined by

(5.27) χ := min
A⊂ϒN :π̄(A)≤1/2

∑
(x,y)∈A,(x′,y′)∈A� π̄(x′, y′)r̄N [(x′, y′), (x, y)]

π̄(A)
.

In fact we are going to prove a lower bound on

(5.28) χ ′ := min
A⊂ϒN :(x0,y0)/∈A

∑
(x,y)∈A,(x′,y′)∈A� π̄(x′, y′)r̄N [(x′, y′), (x, y)]

π̄(A)
,

where (x0, y0) is the minimal element with positive probability in ϒN (which is either
(N/2,N/2) or ((N − 1)/2, (N + 1)/2)) for the order considered above. It is easy to check
that χ ≥ χ ′ since the numerator of the minimized quantity is unchanged when A is replaced
by A�. Now from the above observation and [29], Theorem 13.10, we have

(5.29) gapN(λ,σ ) ≥ (
χ ′)2/2.

We are going to use an approximation for π̄ . We set

(5.30) p̄(x, y) := e−2(y−x)F (λ)+2(y−x)G(
σ(y−x)

N
)(y − x + 1)−3/2

(
σ 2(y − x + 1)3

N2 ∨ 1
)
.

We have by Propositions 3.1 and 3.3 that for some constant C1(λ)

(5.31) C1(λ)−1 ≤ π̄((x, y))

p̄((x, y))
≤ C1(λ).

Since we also have

(5.32) inf
x,y

r̄N
(
(x, y), (x ± 1, y ± 1)

)≥ r∗(λ, σ1) > 0,

this implies that

(5.33) χ ′ ≥ r∗C−2
1 min

A⊂ϒN :(x0,y0)/∈A

∑
(x,y)∈A,(x′,y′)∈A� p̄(x′, y′)1{|x−x′|+|y−y′|=1}

p̄(A)
.

Now for every x and y

(5.34)
min

[
log
(

p̄(x + 1, y)

p̄(x, y)

)
, log

(
p̄(x, y − 1)

p̄(x, y)

)]
≥ 2

[
F(λ) − σ1G

′(σ1) − G(σ1)
]

=: γ (λ,σ1).
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Hence, we have

(5.35)
∑

(x′,y′)�(x,y)

p̄
(
x′, y′)≤ (

1 − e−γ )−2
p̄(x, y).

Now given A such that (x0, y0) /∈ A. As we want to give an upper bound on p̄(A) using
(5.35), we let A′ denote the set of (x, y) which are at distance one of (in �1) and inferior to
(for the inclusion order (3.62)) an element in A,

(5.36) A′ := {
(x, y) ∈ A� : {(x − 1, y), (x, y + 1)

}∩ A �= ∅
}
.

Since

A ⊂ ⋃
(x,y)∈A

{(
x′, y′) : (x′, y′)� (x, y)

}
then (5.35) implies that

(5.37) p̄(A) ≤ (
1 − e−γ )−2

p̄
(
A′).

On the other hand we have

(5.38)
∑

(x,y)∈A,(x′,y′)∈A�
p̄
(
x′, y′)1{|x−x′|+|y−y′|=1} ≥ p̄

(
A′).

In view of (5.33) and (5.29), this implies that

gapN(λ,σ ) ≥ (
C1
[
1 − e−γ ])−4(

r∗)2/2.

In the case where G(σ)+σG′(σ ) = F(λ), then we simply need to replace (1 − eγ )−2 by N2

in (5.35) and we obtain that

gapN(λ,σ ) ≥ (C1N)−4(r∗)2/2. �

5.5. Proof of Proposition 5.2. We now assume that E(λ,σ ) > 0 and prove that the lower
bound proved in Proposition 4.1 using a simple bottleneck argument is sharp up to polynomial
correction. Our starting point is to apply Proposition 5.3 considering this time the partition
into two �N = E1

N � E2
N . We let gapN,i be the spectral gap of the Markov chain restricted

to E i
N for i = 1,2 and and let gap1,2 denote the spectral gap of the reduced chain on {1,2}.

Using the fact that for every ξ ∈ �N ,

(5.39)
∑

ξ ′∈�N

rN
(
ξ, ξ ′)≤ 2N,

we have

(5.40) gapN(λ,σ ) ≥ min
(

1

3
gap1,2,

gap1,2 mini∈{1,2} gapN,i

gap1,2 + 6N

)
.

The quantity gap1,2 corresponds exactly to E(f )/VarμN
(f ) with f = 1E1

N
, which was esti-

mated in equation (4.7). The main task in our proof is thus to show that gapN,i decays only
like a power of N , or in other words, that the chains restricted to each of the potential wells
mix rapidly. This corresponds to the following two propositions.

PROPOSITION 5.8. If E(λ,σ ) > 0, then, there exists c(λ) > 0 and C(λ,σ ) such that for
all N ≥ 2, we have

(5.41) gapN,1 ≥ c(λ)N−C(λ,σ ).

Moreover C(λ,σ ) can be chosen to be increasing in σ .
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PROPOSITION 5.9. If E(λ,σ ) > 0, then, there exists c(λ,σ ) > 0 such that for all N ≥ 2,
we have

(5.42) gapN,2 ≥ c(λ,σ )N−C(λ,σ ).

To prove these results, our strategy will be to use again the chain reduction to simplify the
geometry of the state space.

PROOF OF PROPOSITION 5.2 FROM PROPOSITION 5.8 AND 5.9. Let r̄ and π̄ denote the
rates associated to the reduced chain. By the variational formula (2.7), we have

gap1,2 = r̄(1,2)

π̄(2)
=
∑

ξ∈E1
N,ξ ′∈E2

N
μN(ξ)rN(ξ, ξ ′)

μN(E1
N)μN(E2

N)
≥ exp(2σ

N
)

λ + exp(2σ
N

)

μN(∂E1
N)

μN(E2
N)μN(E1

N)
.

The last inequality comes from the fact that for every ξ ∈ ∂E1
N there is at least one transition

to E2
N , and has rate

exp( 2σ
N

)

λ+exp( 2σ
N

)
. Hence from Proposition 4.2 and Proposition 2.1, we have

(5.43) gap1,2 ≥ c(λ,σ )
√

N exp
(−2NE(λ,σ )

)
.

To conclude, we use (5.43) together with the results of Propositions 5.8 and 5.9 in (5.40). �

5.6. Proof of Proposition 5.8. Although Proposition 5.8 is only concerned with the case
E(λ,σ ) > 0, we start the induction with σ ≤ σ0 (with σ0 which is defined in (5.10) and satisfy
in particular E(λ,σ0) = 0). Let us assume by convention that if E(λ,σ ) = 0 then E1

N = �N

and gapN,1(λ, σ ) = gapN(λ,σ ). Since our proof proceeds by an iterative structure similar to
that of Proposition 5.1, we are going to proceed by by induction. Recall the definition (5.10),
we are going to prove the following statement (for the constant C̃(λ) given in Proposition 5.1)
(which we refer to as Uk) is valid for all k ≥ 0 (for a sequence Ck(λ) that will be specified in
the course of the proof):

(5.44) ∀N ≥ 1,∀σ ≤ 2kσ0, gapN,1(λ, σ ) ≥ Ck(λ)N−C̃(λ)−4k.

The statement for k = 0 is exactly Proposition 5.1, so there is nothing to prove to start the
induction. Now assuming Uk let us prove Uk+1.

Again we replace the rate by restricting the transitions of L and R to nearest neighbor as
in (5.17). We apply Proposition 5.3 to this modified chain with the partition of E1

N given by
E1

N = �(x,y)∈ϒ ′
N
�′

(x,y) where

(5.45)
�′

(x,y) := {
ξ ∈ E1

N : L(ξ) = 2x and R(ξ) = 2y
}
,

ϒ ′
N := {

(x, y) : x, y ∈ �0,N �,2x ≤ N ≤ 2y and y − x ≤ β∗N
}
.

We let gap′
(x,y) be the spectral gap associated with the Markov chain restricted to �′

(x,y) and
let gapN,1 denote the spectral gap associated with the reduced chain on ϒ ′

N (whose transition
are only (x, y ± 1) and (x ± 1, y)). Applying Proposition 5.3, we obtain that

(5.46) gapN,1 ≥ min
(gapN,1

3
,

gapN,1 minϒN
gap′

(x,y)(λ, σ )

gapN,1 + 12

)
.

To provide a lower bound on gapN,1, we can repeat the proof of (5.25) in Proposition 5.6.
The important point here is that the probability distribution for the reduced chain is given by

π̄1(x, y) :=
(
Zx

(
λ,

σx

N

)
μ

λ,σx
N

x

(
Lmax ≤ β∗N

)
Zy−x

(
0,

σ (y − x)

N

)
ZN−y

(
λ,

σ (N − y)

N

)
× μ

λ,
σN−y

N

N−y

(
Lmax ≤ β∗N

))
/
(
Z
(
E1

N

))
.
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Now by a variant Proposition 4.2 (the estimate for Z(E1)), we have

(5.47)
1

C(λ)
e2xF(λ) ≤ Zx

(
λ,

σx

N

)
μ

λ,σx
N

x

(
Lmax ≤ β∗N

)≤ C(λ,σ )e2xF(λ).

One needs to check within the proof of Proposition 4.2 that the bounding constant C does
not depend on x. The lower bound is easy and is obtained by replacing σ by 0. For the upper
bound on the other hand, one only needs to apply the bound (4.10) (which depends on σ but

not on x since Nβ∗(σ ) = xβ∗(σx
N

)). Using a similar bound for μ
λ,

σN−y
N

N−y (Lmax ≤ β∗N), we
obtain that π̄1(x, y) can be replaced by p̄(x, y) as in the proof of Proposition 5.6 and proceed
similarly (here the restriction y − x ≤ β∗N plays a crucial role) to obtain

(5.48) ∀σ ≤ 2k+1σ0, gapN,1 ≥ C′
k(λ)N−4

(the constant depend on σ but can be made uniform in the range σ ≤ 2k+1σ0). Let us now
turn to gap′

(x,y). As in the proof of Proposition 5.4, the dynamic restricted to �(x,y) consists
in three independent parts and thus we have

(5.49) gap′
(x,y) = gapx,1

(
λ,

xσ

N

)
∧ gapy−x

(
0,

(y − x)σ

N

)
∧ gapN−y,1

(
λ,

(N − y)σ

N

)
,

where we recall that gapx,1(λ, xσ
N

) is the spectral gap of the chain restricted to {ξ ∈ �x :
Lmax(ξ) ≤ β∗N} (here it is important to notice that Nβ∗(σ ) = xβ∗(σx

N
)). Now xσ

N
,

(N−y)σ
N

≤
2kσ0 so that one can apply the induction hypothesis to them. Combining this with Proposi-
tion 5.5, we have for every x, y ∈ ϒ ′

(x,y)

(5.50) gap′
(x,y) ≥ Ck(λ)N−C̃(λ)−4k.

Finally we can conclude that Uk+1 holds combining (5.50) and (5.48) and (5.46).

5.7. Proof of Proposition 5.9. While still relying on the chain decomposition method,
the proof of this result requires a new partition of the state space. This time we need to trace
the location of all the excursions of size larger than β∗N . We define thus

(5.51) �N := {[
k, (�i, ri)

k
i=1
] : k ≥ 1; ∀i ∈ �1, k�, ri − �i > β∗N , and �i+1 ≥ ri

}
.

Now given ξ ∈ E2
N we define k(ξ) and (�i(ξ), ri(ξ))

k(ξ)
i=1 as the number and position of excur-

sions of size larger than β∗N . Moreover, �i and ri are the unique increasing sequences that
satisfy

(5.52)

⎧⎪⎪⎨⎪⎪⎩
∀i ∈ �1, k�, ri(ξ) − �i(ξ) > β∗N,

∀i ∈ �1, k�, ξ2�i
= ξ2ri = 0 and ∀x ∈ �2�i + 1,2ri − 1�, ξx > 0,

∀x ∈ �0,N − 1� \ {(�i, ri)
}k
i=1,∃y ∈ �x + 1,

(
x + β∗N

)∧ N �, ξ2y = 0.

We also define

(5.53) �[k,(�i ,ri )
k
i=1] := {

ξ ∈ E2
N : [k(ξ),

(
�i(ξ), ri(ξ)

)k(ξ)
i=1

]= [
k, (�i, ri)

k
i=1
]}

.

We use the letter ψ to denote a generic element of �N . In addition, let gapψ denote the
spectral gap associated with the Markov chain restricted to �ψ , and let gapN,2 denote the
spectral gap associated with the reduced chain on �N . Our result easily follows from the
following estimates for the restricted and reduced chains, respectively.

PROPOSITION 5.10. There exist constants c(λ) > 0 and C(λ,σ ) > 0 such that for all
N ≥ 1,

min
ψ∈�N

gapψ ≥ c(λ)N−C(λ,σ ).
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PROPOSITION 5.11. For all N ≥ 1, we have

gapN,2 ≥ c(λ,σ )N−3.

PROOF OF PROPOSITION 5.9 USING PROPOSITIONS 5.10 AND 5.11.. Applying Propo-
sition 5.3 together with the fact that

∑
ξ ′∈�N

rN(ξ, ξ ′) ≤ 2N for all ξ ∈ �N , we have

(5.54) gapN,2 ≥ min
(gapN,2

3
,

gapN,2 minψ∈�N
gapψ

gapN,2 + 6N

)
≥ c′(λ, σ )N−C′(λ,σ ). �

PROOF OF PROPOSITION 5.10. Note that the chain restricted to �ψ is indeed a
product chain since the respective restrictions of ηt to the intervals (�2�i,2ri �)ki=1 and
(�2ri,2�i+1�)ki=0 are independent Markov chains where r0 := 0 and �k+1 := N . The spec-
tral gap gap[k,(�i ,ri )

k
i=1] associated with this restricted chain is thus given by the minimum of

these chains. Furthermore, the spectral gap of the restricted chain in the interval �2�i,2ri � is
gapri−�i

(0, σ ri−�i

N
), and the spectral gap of the restricted chain in the interval �2ri,2�i+1� is

gap�i+1−ri ,1(λ, σ
�i+1−ri

N
). Using Propositions 5.5 and 5.8, we obtain

(5.55) gapψ ≥ min
(
c(λ)N−C(λ,σ ),N−2)= c(λ)N−C(λ,σ ). �

PROOF OF PROPOSITION 5.11. In this proof, we let r̄ and π̄ denote the rates and invari-
ant measure associated to the reduced chain, respectively. Additionally, define the edge set E
and the edge flows Q, respectively, by

(5.56)
E := {{

ψ,ψ ′} : r̄(ψ,ψ ′)> 0
}
,

Q
(
ψ,ψ ′) := π̄(ψ)r̄

(
ψ,ψ ′)= π̄

(
ψ ′)r̄(ψ ′,ψ

)
.

In order to get our bound for the spectral gap we are going to rely on the so called “path
method” (see [29], Chapter 13, for an introduction to the method and bibliographical re-
marks). For two distinct elements ψ and ψ ′ of �N we construct a path from ψ to ψ ′
denoted by �(ψ,ψ ′). Our paths (whose explicit algorithmic construction is given below)
are sequences (ψ0,ψ1, . . . ,ψ|�|) elements such that ψ0 = ψ , ψ|�| = ψ ′ and any two con-
secutive elements forms an edge in E. We say that e ∈ � if there exists j ≤ |�| such that
{ψj−1,ψj } = e. For e ∈ E, we define the congestion ratio over the edge e as

(5.57) B(e) := 1

Q(e)

∑
ψ,ψ ′∈�N

e∈�(ψ,ψ ′)

π̄(ψ)π̄
(
ψ ′).

By [29], Corollary 13.21, we have

(5.58) gapN,2 ≥
(
max
e∈E

(
B(e)

)
max

ψ,ψ ′∈�N

∣∣�(ψ,ψ ′)∣∣)−1
.

Since we aim for a polynomial bound and the cardinal of �N is a power of N , the length of
the path will not be an issue. Our construction must thus aim at minimizing the congestion
ratio.

To construct a path from ψ to ψ ′, we construct in fact a path from ψ to [1, (0,N)] and
from ψ ′ to [1, (0,N)] and concatenate these two paths (taking the second path in reverse
order) to get our full path whose length is at most 2N .

To construct the finite sequence [k(j), (�i(j), ri(j))
k(j)
i=1 ]Jj=0 from ψ to [1, (0,N)] we pro-

ceed as follows:

• We set [k(0), (�i(0), ri(0))
k(0)
i=1 ] = ψ .
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• If �1(j) > 0, then �1(j + 1) = �1(j) − 1 and the other coordinates are unchanged.
• If �1(j) = 0 and r1(j) < �2(j) (or r1(j) < N if k(j) = 1) then r1(j + 1) = r1(j) + 1 and

the other coordinates are unchanged.
• If �1(j) = 0 and �2(j) = r1(j), then k(j +1) = k(j)−1, r1(j +1) = r2(j) and ri(j +1) =

ri+1(j), �i(j + 1) = �i+1(j) for i ∈ �2, k(j) − 1�.
• We stop the algorithm when one reaches [1, (0,N)].
By construction the length of the path satisfies |�(ψ,ψ ′)| ≤ 2N for any ψ and ψ ′. Now
we provide an upper bound on maxe∈E B(e) using the precise estimates in Section 3 and
Section 4. By symmetry, given e at the cost of multiplicative factor 2, we can only sum over
paths for which e belongs to the “first-half” of the paths (that linking ψ to [1, (0,N)] let us
call it �1(ψ)). Summing over all possible end points ψ ′ we obtain that

(5.59) B(e) = 2

Q(e)
π̄
({

ψ : e ∈ �1(ψ)
})

.

To control the above quantity we need an explicit description of the set �(e) := {ψ : e ∈
�1(ψ)}. Let us say that e = {[m, (xi, yi)

m
i=1], [m′, (x′

i , y
′
i)

m′
i=1]} and that [m, (xi, yi)

m
i=1] is the

first state visited on the path to �1(ψ) (with our algorithm which state is visited first does not
depend on ψ). We are going to prove the two following inequalities:

Q(e) ≥ 1

C(λ,σ )

Z(�[m,(xi ,yi )
m
i=1

])
Z(E2

N)
,

π̄
(
�(e)

)≤ C(λ,σ )
N2Z(�[m,(xi ,yi )

m
i=1

])
Z(E2

N)
,

(5.60)

which are then sufficient to conclude using (5.58) and the bound we have for the path length.
For the first one, we just have to check that the rate r̄([m, (xi, yi)

m
i=1], [m′, (x′

i , y
′
i)

m′
i=1]) is

bounded away from zero (even though it is slightly improper since edges are not oriented, we
use the shorthand notation r̄(e) for the rate). There are two cases to treat: either the transition

e merges two excursions or it enlarges the first one. In the first case, we have r̄(e) = exp( 2σ
N

)

λ+exp( 2σ
N

)
.

In the second case, let us assume that x′
1 = x1 − 1 (the case y′

1 = y1 + 1 being identical) we
have

(5.61)

r̄(e) = exp(2σ
N

)

λ + exp(2σ
N

)
μN(ξ2(x1−1) = 0 | ξ ∈ �[m,(xi ,yi )

m
i=1])

= exp(2σ
N

)

λ + exp(2σ
N

)

λZx1−1Z1

Zx1

,

where we have used the notation

(5.62) Zn := Zn

(
λ,σ

n

N

)
μ

λ,σ n
N

n

(
Lmax ≤ β∗N

)
for n ∈ �1,N � and Z0 = 1. Recalling (5.47), we have

(5.63) C(λ)−1 ≤ e−2nF(λ)Zn ≤ C(λ,σ ),

and thus we have the desired uniform lower bound for r̄(e). Now let us prove the second
estimate in (5.60). Note that

(5.64) �(e) ⊂ {[
n + m − 1,

(
x′′
j , y′′

j

)n
j=1 ∪ (xi, yi)

m
i=2
] ∈ �N : n ≥ 1, x′′

1 ≥ x1 and y′′
n ≤ y1

}
.
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Now we can partition �(e) according to the value of x′′
1 and y′′

n (let us call them � and r

respectively. Now for any element of this set we have

π̄(�(e))Z(E2
N)

Z(�[m,(xi ,yi )
m
i=1

]) = ∑
ψ∈�(e)

Z(�ψ)

Z(�[m,(xi ,yi )
m
i=1])

≤ ∑
�≥x1,r≤y1
r−�≥β∗N

Z�Zr−�(λ, r−�
N

σ)μ
λ, r−�

N
σ

r−� (Lmax > β∗N)Zx2−r

Zx1Zy1−x1(0, σ
y1−x1

N
)Zx2−y1

.

(5.65)

We can apply Proposition 4.2 to obtain that for any n ∈ [β∗N,N]

(5.66) Zn

(
λ,σ

n

N

)
μ

λ,σ n
N

n

(
Lmax > β∗N

)≤ C(λ,σ )√
N

e2nG( n
N

σ).

We can use (5.63) and Proposition 3.1 to estimate the other terms. We obtain then (for a
different constant)

Z�Zr−�(λ, r−�
N

σ)μ
λ, r−�

N
σ

r−� (Lmax > β∗N)Zx2−r

Zx1Zy1−x1(0, σ
y1−x1

N
)Zx2−y1

≤ C(λ,σ )e2(�−x1+y1−r)F (λ)+2(r−�)G( r−�
N

σ)−2(y1−x1)G(
y1−x1

N
σ) ≤ C(λ,σ ),

(5.67)

where in the last inequality is simply due to the monotonicity of the functional β �→
βG(βσ) − βF(λ) = H(β) on the interval [ r−�

N
,

y1−x1
N

] ⊂ [β∗,1]. Indeed the quantity in the
exponent is equal to 2N[H(r−�

N
) − H(

y1−x1
N

)]. Summing over � and r , we obtain the desired
bound. �

6. Metastability proof of Theorem 2.8. For the proof of Theorem 2.8, we simply have
to use the previously proved estimates and use a general result proved in [1]. We more specif-
ically need a slightly modified version of the statement which we cite from [26].

THEOREM 6.1 (Theorem 5.1 in [26]). We consider a sequence of irreducible reversible
Markov chains in the state space �N , HN a subset of �N and set H�

N := �N \ HN . We
let μN denote the reversible measure of the chain, gapN the spectral gap of the chain, and
gapN,HN

, gap
N,H�

N
the spectral gap of the corresponding restricted chains. Let PμN(·|HN)

denote the distribution of the Markov chain (ηt ) with initial distribution μN(· | HN). Let us
assume that:

(1) limN→∞ μN(HN) = 0.
(2) limN→∞ gapN

min(gapHN
,gapH�

N

)
= 0.

Then under PμN(·|HN) the finite dimensional distribution of the process 1HN
(ηtT N

rel
) converges

to that of a Markov chain which starts at 1 and jumps, at rate one, to 0 where it is absorbed.

The first condition in Theorem 6.1 says that all the mass is concentrated in H�
N , and the

second condition says that the time for the dynamics restricted to HN (or H�
N) to relax to local

equilibrium is much shorter than that for the dynamics in �N to relax to global equilibrium.
Now we collect all the ingredients to verify the assumptions in Theorem 6.1 and to prove
Theorem 2.8.



3446 H. LACOIN AND S. YANG

PROOF OF THEOREM 2.8. We recall the definition of HN in (2.33). We first check the
case G(σ) ≤ F(λ) where HN = E2

N . By (3.37) and (3.38) respectively, we have

(6.1)

⎧⎪⎨⎪⎩
μN

(
E2

N

)≤ e−CN if G(σ) < F(λ);
μN

(
E2

N

)≤ C√
N

if G(σ) = F(λ).

Now we turn to the case G(σ) > F(λ) where HN = E1
N . By (3.59), we have

(6.2) μN

(
E1

N

)≤ e−CN.

We have thus checked the first assumption in Theorem 6.1 in every case. Now we turn to
verify the second assumption. By Proposition 5.8 and Proposition 5.9, we have

min(gapHN
,gapH�

N
) = min(gapN,1,gapN,2) ≥ c(λ,σ )N−C(λ,σ ).

Moreover, by Proposition 4.1 we have

(6.3) gapN ≤ C(λ,σ )N2 exp
(−2NE(λ,σ )

)
,

which allows us to verify the second assumption in Theorem 6.1. We apply Theorem 6.1 to
conclude the proof. �

APPENDIX: PROOF OF PROPOSITION 5.5

Since gapn(0, σ ) = gapn−1(1, σ n−1
n

) and it is more convenient to deal with gapn(1, σ ),
we focus on the lower bound on gapn(1, σ ) combining the ideas in [23] and [5]. Since this
is not a new argument, our proof while complete, keeps the level of details at minimum, we
refer the readers to [23], Section 3.3, and [5], Section 4, for more details in the computation
and intuition. For x ∈ �1,2n − 1� and f : �0,2n� → R, set (�f )(x) := f (x + 1) + f (x −
1) − 2f (x) and

p := exp(2σ
n

)

1 + exp(2σ
n

)
, q := 1 − p.

For ξ ∈ �n and x ∈ �1,2n − 1� with fξ (x) := (
q
p
)

1
2 ξx , a direct computation yields

(A.1)
(
Lf·(x)

)
(ξ) = √

pq(�fξ )(x) − (
√

p − √
q)2fξ (x) − (2p − 1)

√
q

p
1{ξx−1=ξx+1=0}.

In view of (A.1) and [23], Section 3.3, for ξ ∈ �n we define

(A.2)

hn(ξ) := −
2n−1∑
x=1

(
q

p

) 1
2 ξx

sin
(

πx

2n

)
,

�(ξ) := (2p − 1)

√
q

p

2n−1∑
x=1

sin
(

πx

2n

)
1{ξx−1=ξx+1=0}.

We consider the natural partial order on �n × �n defined as follows:

(A.3)
(
ξ ≤ ξ ′) ⇔ (∀x ∈ �1,2n�, ξx ≤ ξ ′

x

)
.

Note that there exists a maximal element and a minimal element for this order in �n (respec-
tively, ξmax and ξmin defined by ξmax

x := min(x,2n − x) and ξmin
x := x − 2�x/2�). Another

important observation is the fact that the order is in a sense preserved by the dynamics. There
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exists a canonical coupling which allows to construct a family of processes (η
ξ
t )t≥0,ξ∈�n ,

such that for every ξ , (η
ξ
t )t≥0 is a Markov chain on �N with generator L (see, for instance,

the proof of [24], Appendix A, that applies to our case without any modification) such that

(A.4)
(
ξ ≤ ξ ′) ⇒ (∀t ≥ 0, η

ξ
t ≤ η

ξ ′
t

)
.

The conservation of the order and the existence of extremal path puts us in the right setup to
apply a technical result relating spectral gap and contraction rate of monotone function. Let
us state here this result in a continuous time setup.

PROPOSITION A.1 (Proposition 3 in [33]). Let (�,≤) be a finite space equipped with
partial order which admits a maximal and minimal element, and L be the generator of an
order preserving Markov chain (in the sense of (A.4) whose spectral gap is simply denoted
by gap.

If h is a strictly increasing function on � (in the sense that h(ξ) < h(ξ ′) if ξ ≤ ξ ′, ξ < ξ ′)
which satisfies for all ξ, ξ ′ ∈ � with ξ ≤ ξ ′

(A.5) Lh
(
ξ ′)−Lh(ξ) ≤ −γ

(
h
(
ξ ′)− h(ξ)

)
then we gave gap ≥ γ .

It is immediate to check that hn is strictly increasing for the order (A.3). Note also that �

is (nonstrictly) decreasing. If ξ ≤ ξ ′, by (A.1), we have thus

(A.6)

(Lhn)
(
ξ ′)− (Lhn)(ξ)

= −
[
4
√

pq sin2
(

π

4n

)
+ (

√
p − √

q)2
](

hn

(
ξ ′)− hn(ξ)

)+ �
(
ξ ′)− �(ξ)

≤ −
[
4
√

pq sin2
(

π

4n

)
+ (

√
p − √

q)2
](

hn

(
ξ ′)− hn(ξ)

)
,

and from Proposition A.1 we can conclude that

(A.7)

gapn(1, σ ) ≥ 4
√

pq sin2
(

π

4n

)
+ (

√
p − √

q)2

= 1 − 2
√

pq

[
1 − 2 sin2

(
π

4n

)]
≥ 2 sin2

(
π

4n

)
,

where we have used 2
√

pq ≤ 1 in the last inequality.
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